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ABSTRACT. We compare two notions of p-completion for a spectrum.

There are two endofunctors of the category of spectra that can legitimately be called
completion at the prime p. The first one is the localization at the Moore spectrum SZ/p and
is what is usually called p-completion and the second one is the unit map X 7→Mat(X̂) in
an adjunction between spectra and pro-objects in the category of spectra whose homotopy
groups are finite p-groups and almost all zero. The goal of this note is to compare these
two functors. This will be achieved in Theorem 2.3.

This result should not come as a surprise to experts in the field. However, it seems to
be missing from the literature. The main reason is probably that, in order to formulate it
precisely, one needs an ∞-categorical notion of pro-categories.
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tions.

1. NOTATIONS

This note is written using the language of ∞-categories. All the categorical notion
should be understood in the ∞-categorical sense. All the ∞-categories that we consider
are stable and we denote by Map their mapping spectrum.

For E a spectrum, we denote by cpE the localization of E with respect to the homology
theory SZ/p. Note that by [Bou79, Theorem 3.1.], this coincides with the HZ/p local-
ization if E is bounded below. For E a bounded below spectrum with finitely generated
homotopy groups, the map E→ cpE induces the map E∗→ E∗⊗Zp on homotopy groups.

We denote by Spp− f in the smallest full stable subcategory of Sp containing the spectrum
HZ/p. This is also the full subcategory of Sp spanned by the spectra whose homotopy
groups are finite p-groups and are almost all 0.

We denote by Ŝpp the category Pro(Spp− f in). The inclusion Spp− f in → Sp induces a
limit preserving functor Mat : Ŝpp→ Sp. This has a left adjoint denoted X 7→ X̂ . We often
use the notation X = {Xi}i∈I for objects of Ŝpp. This means that X = limi Xi in Ŝpp with
I cofiltered and Xi in Spp− f in. Any object of Ŝpp admits a presentation of this form. The
functor Mat(X) is then given by the formula Mat(X) = limI Xi where the limit is computed
in Sp.

We denote by τn the n-th Postnikov section endofunctor on Sp. By the universal prop-
erty of the pro-category, there is a unique endofunctor of Ŝpp that coincides with τn on
Spp− f in and commutes with cofiltered limits. For A a pro-p abelian group, we denote by
ĤA the object of Ŝpp given by applying the Eilenberg-MacLane functor to an inverse sys-
tem of finite abelian group whose limit is A. Note for instance that ĤZp lives in Ŝpp while
HZp lives in Sp. We obviously have a weak equivalence HZp→Mat(ĤZp).

We denote by Sp f t
p the full subcategory of Sp spanned by bounded below spectra whose

homotopy groups are finitely generated Zp-modules. Note that if X is a bounded below
spectrum that has finitely generated homotopy groups, then cpX is in Sp f t

p . Similarly, we

denote by Ŝp
f t
p the full subcategory of Ŝpp spanned by pro-spectra that are bounded below
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and whose homotopy groups are finitely generated Zp-modules (given a pro-spectrum X =
{Xi}i∈I , its n-th homotopy group is the pro-abelian group {πn(Xi)}i∈I).

2. PROOFS

Lemma 2.1. The map HZp→Mat(ĤZp) is adjoint to a weak equivalence ĤZp→ ĤZp.

Proof. It suffices to show that for any spectrum F in Spp− f in, the map

MapŜpp
(ĤZp,F)→Map(HZp,F)

is a weak equivalence. Since both sides of the equation are exact in F , it suffices to do it
for F = HZ/p. Hence we are reduced to proving that the map

colimn Hk(HZ/pn,Z/p)→ Hk(HZp,Z/p)

is an isomorphism for each k. Since Z/p is a field, cohomology is dual to homology
and it suffices to prove that Hk(HZp,Zp) is isomorphic to {Hk(HZ/pn,Z/p)}n in the
category of pro-abelian groups. In [Lur11, Proposition 3.3.10.], Lurie shows that there
is an isomorphism of pro-abelian groups:

Hk(Σ
−m

Σ
∞K(Zp,m),Z/p)∼= {Hk(Σ

−m
Σ

∞K(Z/pn,m),Z/p)}n

By Freudenthal suspension theorem, for any abelian group A, the map Σ−mΣ∞K(A,m)→
HA is about m-connected. Thus, taking m large enough, Lurie’s result gives what we
need. �

Proposition 2.2. Let Y be an object of Sp f t
p . Then the unit map Y →Mat(Ŷ ) is a weak

equivalence.

Proof. Let us call a spectrum Y good if this is the case. The good spectra form a triangu-
lated subcategory of Sp. This subcategory contains HZ/p. According to Lemma 2.1, it
also contains HZp. Hence, it contains τnY for any n and any Y in Sp f t

p .
Thus, for Y in Sp f t

p , there is an equivalence τnY →Mat(τ̂nY ) for each n. In order to
prove that Y is good, it will be enough to prove that the map

Mat(Ŷ )→ limn Mat(τ̂nY )

is a weak equivalence. Since Mat is a right adjoint, it is enough to prove that the obvious
map

Ŷ → limn τ̂nY
is a weak equivalence. As in the previous lemma, it is enough to prove that for each k the
map

colimn Hk(τnY,Z/p)→ Hk(Y,Z/p)
is an isomorphism which is straightforward. �

We can now prove our main result.

Theorem 2.3. There is a natural transformation from cp to Mat(−̂) that is a weak equiva-
lence when restricted to spectra X such that cpX is in Sp f t

p . In particular, it is a weak equiv-
alence on spectra that are bounded below and have finitely generated homotopy groups.

Proof. We first make the observation that for any spectrum X , the obvious map X̂ → ĉpX
is a weak equivalence. Indeed, it suffices to prove that for any F in Spp− f in, the map
X → cpX induces a weak equivalence

Map(cpX ,F)→Map(X ,F)

but this follows from the fact that F is local with respect to SZ/p.
Thus, there is a natural transformation of endofunctors of Sp:

α(X) : cpX →Mat(ĉpX)'Mat(X̂)
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Proposition 2.2 tells us that α(X) is a weak equivalence whenever cp(X) is in Sp f t
p as

desired. �

3. THE ADAMS SPECTRAL SEQUENCE

As an application of Theorem 2.3, we give an alternative construction of the Adams
spectral sequence. We denote by H the Eilenberg-MacLane spectrum HZ/p. We denote
by A the ring spectrum Map(H,H). Note that A ∗ = π−∗A is the Steenrod algebra. There
is a functor Spop→ModA sending X to Map(X ,H).

Proposition 3.1. Let X be any spectrum and Y be an object of Sp f t
p . Then, the obvious

map
Map(X ,Y )→MapA (Map(Y,H),Map(X ,H))

is a weak equivalence.

Proof. Since H is in Spp− f in, we have an equivalence Map(X ,H)'MapŜpp
(X̂ ,H) for any

spectrum X . By 2.2, the map

Map(X ,Y )→MapŜpp
(X̂ ,Ŷ )

is an equivalence. Hence, we are reduced to proving that the obvious map

MapŜp(X̂ ,Ŷ )→MapA (Map(Ŷ ,H),Map(X̂ ,H))

is an equivalence. We claim more generally that for any object Z in Ŝpp, the map

MapŜp(X̂ ,Z)→MapA (Map(Z,H),Map(X̂ ,H))

is an equivalence. Indeed, since both sides are limit preserving in the variable Z, it suffices
to prove it for Z = HZ/p which is tautological. �

According to [EKMM97, Theorem IV.4.1.], we get a conditionally convergent spectral
sequence

Exts,tA ∗(H
∗(Y ),H∗(X)) =⇒ πs+t Map(X ,Y )

for Y a spectrum in Sp f t
p .
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