
MOTIVIC HOMOLOGICAL STABILITY FOR CONFIGURATION SPACES OF
THE LINE

GEOFFROY HOREL

Abstract. We lift the classical theorem of Arnol’d on homological stability for configuration
spaces of the plane to the motivic world. More precisely, we prove that the schemes of unordered
configurations of points in the affine line satisfy stability with respect to the motivic t-structure
on mixed Tate motives.
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1. Introduction

There are many examples in mathematics of a sequence of spaces
X1 → X2 → . . .→ Xn → . . .

such that for any integer i, the induced sequence on homology groups
Hi(X1,Z)→ Hi(X2,Z)→ . . .→ Hi(Xn,Z)→ . . .

eventually becomes constant. Such a phenomenon is called homological stability. Let us mention
a few examples: homological stability holds for the classifying spaces of the symmetric groups Σn
(Nakaoka), the classifying space of the mapping class groups Γg,1 of a surface of genus g with
one boundary component (Harer), the classifying space of automorphisms of free groups Aut(Fn)
(Hatcher–Vogtmann), the space of unordered configurations of points in an open manifold (McDuff
[McD75]).

This paper is concerned with the case of configurations of points in the plane. In that case
McDuff reduces to a theorem of Arnol’d of homological stability for classifying spaces of braid
groups. Indeed, it is a classical fact that the space of unordered configurations of n points in the
plane is a model for the classifying space of the braid group on n strands. There is a stabilizing
map Bn → Bn+1 which adjoins a trivial strand on the side of a braid with n-strands. The stability
theorem for the braid groups is then given by the following theorem.

Theorem (Arnol’d, [Arn70]). The stabilizing map induces an isomorphism
Hi(Bn+1,Z) ∼= Hi(Bn,Z)

when i < bn/2c+ 2.
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The purpose of the present paper is to prove a motivic version of this result. In order to state our
main theorem the first step is to construct algebro-geometric versions of the space of configurations
in the plane. These are given by a sequence of schemes Cn whose points over a commutative ring
R are the square-free degree n monic polynomials over R. This choice is justified by the fact that
the complex points of Cn with the usual complex topology recovers the topological space Cn(R2)
of unordered configurations in the plane. Our motivic homological stability result has the following
form.

Theorem (6.6). The motivic cohomology groups Hi(Cn,Z(q)) are independent of n as long as
i < bn/2c+ 2 and n is at least 3.

The functor Hi(−,Z(q)) are the motivic cohomology groups of Levine constructed in [Lev04]
using a generalization of the cycle complex of Bloch. For us, they will be defined as

Hi(X,Z(q)) ∼= DM(Z)(M(−),Z(q)[i])

where DM(Z) denotes Spitzweck category of motives over Spec(Z) and M(−) is the functor which
assigns to a smooth scheme over Z its motive. We refer the reader to Section 3 for more details
about this category.

This theorem follows from another theorem (Theorem 6.5) which we will roughly state by
saying that the collection of motives M(Cn) has homological stability with respect to the motivic
t-structure. The existence of a motivic t-structure on the whole triangulated category of motives
is one of the most important open conjecture in the area. However, such a t-structure has been
constructed when we restrict to the full triangulated subcategory of mixed Tate motives provided
that the base satisfies the Beilinson–Soulé vanishing conjecture [Lev93]. This last conjecture is
satisfied for Spec(Z) and the motives M(Cn) are mixed Tate motives (6.2).

Contrary to the classical case, we were unable to construct stabilizing maps Cn → Cn+1 in the
unstable (or even stable) motivic homotopy category inducing this isomorphism. The existence of
such maps is related to the existence of a motivic model of the operad of little 2-disks. Evidence for
the existence of such an object is given by the action of the absolute Galois group of Q (resp. the
Tannakian Galois group of MTM(Z)) on the profinite completion (resp. the rational completion)
of the operad of little 2-disks [Hor15, Fre].

Our strategy can be described as follows:
- First, we construct a scanning map Cn → Fn where Fn is the scheme of pointed degree n
maps from P1 to P1 (Section 5).

- We prove that the motives M(Cn) and M(Fn) are mixed Tate motives (6.2).
- We show that the motives M(Fn) have motivic homological stability, in the sense that
certain natural maps M(Fn)→ M(Fn+1) have a fiber whose connectivity tends to ∞. The
connectivity is measured with respect to the motivic t-structure on mixed Tate motives
(6.4).

- We show that the connectivity of the fiber of the map induced by the scanning map
M(Cn)→ M(Fn) tends to∞ with respect to the motivic t-structure on mixed Tate motives
(6.5).

- The previous two facts together imply the desired theorem.
This strategy should be compared to the one used by Bendersky and Miller in [BM14] in the case of
configuration spaces in a closed manifold. In that case the stabilization maps are also unavailable
and the authors study homological stability using the scanning map.

By definition of the category of motives, this theorem implies homological stability for the Betti
cohomology of Cn ×Z Q (which is exactly Arnol’d theorem) but also for the étale, Hodge or de
Rham cohomology of Cn×Z Q. For Cn×Z Fp we also obtain a homological stability statement for
étale cohomology with coefficients in Zl with l prime to p.

Whenever there is a homological stability result, the next step is to construct an object whose
homology is given by the stable homology groups. Let us recall what is known in the topological
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case. We denote by Ω2
0S

2 the connected components of the constant map in the two-fold loop
space Ω2S2.

Theorem (Segal, [Seg73]). There is a map Cn(R2) → Ω2
0S

2 which induces an isomorphism in
homology in the stable range.

In the motivic case, we have a similar result. We can consider the scheme F which is the disjoint
union of the schemes Fn of degree n pointed maps P1 → P1. As observed by Cazanave in [Caz12],
this object has the structure of a monoid such that the map F → Z≥0 sending Fn to n is a monoid
map. However, contrary to the topological case, F is not grouplike (the computation of its π0 is
the main theorem of [Caz12]). We can form the homotopy colimit F∞ of the sequence

F1 → F2 → F3 → . . .→ Fn → . . .

where each map is obtained by multiplication with a fixed element in F1. Our proof of motivic
homological stability immediately implies the following theorem.

Theorem (6.7). The scanning map Cn → F∞ induces an isomorphism in motivic cohomology in
the stable range.

Moreover, the complex points of F∞ with the usual complex topology are a model for Ω2
0S

2 as
shown in Proposition 6.8.

Acknowledgments. I wish to thank Søren Galatius, Martin Palmer and Federico Cantero for
helpful conversations about homological stability, Clément Dupont for teaching me about mixed
Tate motives, Martin Frankland for sharing his expertise on triangulated categories, Sam Nariman
for pointing out the reference [FW15], Jesse Wolfson for finding a mistake in a former version of
this paper and the anonymous referee for several useful comments.

2. t-structures and homological stability

Recall the following definition.

Definition 2.1. Let T be a triangulated category. A t-structure on T is the data of two full
subcategories T≥0 and T<0 satisfying the following conditions:

• If U ∈ T≥0 and V ∈ T<0, then T(U, V ) = 0.
• The category T≥0 is stable under suspensions and the category T<0 is stable under desus-
pension.
• There are functors t<0 and t≥0 from T to T such that the image of t<0 is contained in

T<0 and the image of t≥0 is contained in T≥0. Moreover, there is a natural distinguished
triangle t≥0X → X → t<0X.

Remark 2.2. Usually (e.g. in [GM03, Definition IV.4.2. p. 278]), the third axiom is stated by
requiring that any object X fits into a cofiber sequence

t≥0X → X → t<0X

with t≥0X ∈ T≥0 and t<0X ∈ T<0. However, our definition is not less general as it can be shown
that this distinguished triangle can be made functorial and that the functor t≥0 is right adjoint
to the inclusion which proves that it is unique up to unique isomorphism and similarly for t<0. A
proof of these facts can be found in [GM03, Lemma IV.4.5 p.279]. In particular, all the cofiber
sequences A→ X → B with A in T≥0 and B in T<0 are isomorphic.

Let T be a triangulated category equipped with a t-structure. For d an integer, we denote by
T≥d the full subcategory of T spanned by objects isomorphic to X[d] with X in T≥0. We denote
by T<d the full subcategory spanned by objects isomorphic to X[d] with X in T<0. We denote by
t≥d the functor X 7→ (t≥0X[−d])[d] and t<d the functor X 7→ (t<0X[−d])[d]. We have a natural
distinguished triangle

t≥dX → X → t<dX
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For T a triangulated category equipped with a t-structure, we denote by T♥ the full subcategory
spanned by objects that are both in T≥0 and in T<1. The category T♥ is an abelian category (see
for instance [GM03, IV.4.7.] for a proof).

Definition 2.3. Let T and U be two triangulated categories equipped with t-structure. We say
that a triangulated functor B : T → U is compatible with the t-structure if B(T≥0) ⊂ U≥0
and B(T<0) ⊂ U<0.

Note that a triangulated functor that is compatible with the t-structure induces a functor
T♥ → U♥. The resulting functor of abelian categories is exact. Since we were unable to find this
result in the literature, we have included a proof.

Proposition 2.4. If B : T→ U is a triangulated functor that is compatible with the t-structure,
the induced functor B : T♥ → U♥ is exact.

Proof. It suffices to prove that B preserves kernels and cokernels. We do the case of kernels, the
other case is similar. Given a map f : X → Y in T♥, it is shown in [GM03, IV.4.7.] that its
kernel is obtained by the composite t≥0F → F → X where F → X → Y → F [1] is a distinguished
triangle completing f (note that the authors of [GM03] use the cohomological grading as opposed
to the homological grading used in our paper which explains the difference). Thus, we have an
exact sequence

0→ t≥0F → X
f−→ Y

The functor B sends it to
0→ B(t≥0F )→ B(X) B(f)−−−→ B(Y )

and we have to check that this is exact. In other words, we want to prove that B(t≥0F ) is
isomorphic to t≥0B(F ). We know that there is a cofiber sequence

B(t≥0F )→ B(F )→ B(t<0F )

which by Remark 2.2 must be isomorphic to

t≥0B(F )→ B(F )→ t<0B(F )

�

We now observe that a t-structure is all that is needed in order to be able to define the concept
of homological stability.

Definition 2.5. Let l : N → N be a function tending to +∞. We say that a sequence of
objects {Md}d∈N of a triangulated category T with t-structure (T≥0,T<0) satisfies homological
stability with slope l if, for each d, there exists an isomorphism t<l(d)Md

∼=−→ t<l(d)Md+1.

Remark 2.6. The derived category of a ring Λ, denoted D(Λ), has a standard t-structure in which
the objects of D(Λ)≥0 are the complexes whose homology is concentrated in nonnegative degrees
and the objects of D(Λ)<0 are the complexes whose homology is concentrated in negative degrees.
Given a sequence of spaces {Xd}d∈N, we can consider the sequence {C∗(Xd,Λ)}d∈N of objects of
D(Λ). Then, if this sequence satisfies homological stability with slope l, for any i < l(d), there
is an isomorphism Hi(Xd,Λ) ∼= Hi(Xd+1,Λ). Hence, classical homological stability is a particular
case of our definition.

Remark 2.7. In many cases, the sequence of objects {Md} is equipped with maps fd : Md →
Md+1 and the isomorphisms t<l(d)Md

∼=−→ t<l(d)Md+1 are given by t<l(d)(fd). However there are
cases where such maps are not available. This happens in the case of homological stability for
configuration spaces in a closed manifold [BM14, CP15] or in our main theorem.

We have the following lemma whose proof is trivial.
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Lemma 2.8. Let T be a triangulated category with a t-structure. Let {Md}d∈N and {Nd}d∈N be
two sequences of objects of T and let jd : Md → Nd be maps. Assume that there exists a function
m : N→ N tending to infinity such that all the maps t<m(d)(jd) are isomorphisms. Then if one of
{Md} or {Nd} has homological stability with slope l, the other has homological stability with slope
min(l,m).

3. Mixed motives

We denote by MS(Z) the model category of A1-spaces over Spec(Z). Its underlying category
is the category of simplicial presheaves over the category SmZ of smooth quasi-projective schemes
over Spec(Z). The model structure is obtained by left Bousfield localization of the injective model
structure by imposing descent with respect to the Nisnevich hypercovers and the fact that for any
smooth schemes U , the map U ×A1 → U is a weak equivalence. We can construct in an analogous
way the model category MS(R) of A1-spaces over R for any commutative ring R. The functor
j : X 7→ X×Spec(Z) Spec(Q) is a morphism of sites from the Nisnevich site of smooth schemes over
Z to the Nisnevich site of smooth schemes over Q. It induces a symmetric monoidal left Quillen
functor j∗ : MS(Z) → MS(Q). We get similar functors i∗p : MS(Z) → MS(Fp) for each prime
number p.

We denote by DM(Z) (resp. DM(Q), resp. DM(Fp)) the triangulated category of motives with
Z-coefficients over Spec(Z) (resp. Spec(Q), resp Spec(Fp)). There are several available models for
such a category. We use the model constructed by Spitzweck in [Spi12]. One first constructs the
model category of motivic spectra over Z (resp. over Q, resp. over Fp). This is obtained from the
model category of pointed objects of MS(Z) (resp. MS(Z), resp. MS(Z)) by forcing the motivic
space P1 with base point ∞ to be invertible with respect to the smash product. The category
DM(Z) is then the homotopy category of modules over an E∞-algebra MZ (resp. MZQ, resp.
MZFp) in the symmetric monoidal model category of motivic spectra over Z (resp. over Q, resp.
over Fp) called the motivic Eilenberg-MacLane spectrum. The functor j∗ from MS(Z) to MS(Q)
induces a symmetric monoidal left adjoint j∗ : DM(Z) → DM(Q). Similarly, for each prime p,
the map ip : Z→ Fp induces a symmetric monoidal left adjoint i∗p : DM(Z)→ DM(Fp).

As proved in [RØ08, Theorem 1], the triangulated category DM(Q) is equivalent to Voevod-
sky’s big category of motives over Spec(Q) as a symmetric monoidal triangulated category and
similarly, the triangulated category DM(Fp) is equivalent to Voevodsky’s big category of motives
over Spec(Fp).

When seen as an object of DM(Z), the motivic Eilenberg-MacLane spectrum MZ is simply
denoted Z(0). More generally, for q a nonnegative integer, we denote by Z(q) the MZ-module MZ∧
(Σ∞P1)∧q[−2q]. For a negative integer q, we denote by Z(q) the object HomDM(Z)(Z(−q),Z(0))
where HomDM(Z) denotes the inner Hom in the symmetric monoidal category DM(Z). Note that
the triangulated category DM(Z) is tensored over D(Z), the derived category of chain complexes
over Z. For A an object of D(Z) and q an integer, we denote by A(q) the tensor product A⊗Z(q).

We define similarly objects ZQ(q) in the triangulated category DM(Q) and ZFp(q) in DM(Fp).
We have an isomorphism j∗Z(q) ∼= ZQ(q) (see [Spi12, Theorem 7.6. and Theorem 7.18.]) and
i∗pZ(q) ∼= ZFp

(q) (see [Spi12, Theorem 9.16.]).
The triangulated category DM(Z) comes equipped with a symmetric monoidal functor M :

SmZ → DM(Z) which sends to a smooth scheme its motive. For instance, we have the classical
formula

M(Pn) ∼= Z(0)⊕ Z(1)[2]⊕ . . .⊕ Z(n)[2n]
Definition 3.1. For X a scheme over Z, we define its motivic cohomology of degree p with
coefficients in Z(q) by the following formula:

Hp(X,Z(q)) := DM(Z)(M(X),Z(q)[p])
Spitzweck proves in [Spi12, Corollary 7.19.] that this definition coincides with the definition of

motivic cohomology of schemes over Z given by Levine in [Lev04] by mean of a generalization of
Bloch cycle complexes.
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If X is a scheme over Q, we denote by Hp(X,Z(q)) the motivic cohomology groups given by the
formula:

Hp(X,Z(q)) = DM(Q)(M(X),ZQ(q)[p])
and similarly for schemes over Fp. These motivic cohomology groups coincide with the motivic
cohomology groups defined in [MVW06].

We will need the following fact.
Theorem 3.2. For all integers n and r, there is an exact sequence∏

p

Hn−2(Spec(Fp),Z(r − 1))→ Hn(Spec(Z),Z(r))→ Hn(Spec(Q),Z(r))

where the product is taken over the set of all prime numbers.
Proof. This follows from the distinguished triangle in [Spi12, Lemma 7.8.] by applying derived
global sections. �

Gysin triangles. The following theorem is one of the most useful tool for computations in the
category DM(Z).
Theorem 3.3. Let X be a smooth scheme and Z be a closed smooth subscheme of codimension
n. Let U be the complement of Z in X. Then there is a cofiber sequence in DM(Z)

M(U)→ M(X)→ M(Z)(n)[2n]
where the first map is induced by the inclusion U → X.
Proof. See [Dég08, Definition 4.6.]. �

Betti realization. We denote by DMgm(Z) the thick subcategory spanned by the motives M(X)
for X any smooth scheme. According to [CD09, Theorem 11.1.13] the objects of DMgm(Z) are
exactly the compact objects of DM(Z). The category DMgm(Z) inherits the symmetric monoidal
structure of DM(Z) and contains all the motives Z(n) with n ∈ Z. We define analogously a thick
subcategory DMgm(Q) of DM(Q). Note that there is an isomorphism

j∗M(X) ∼= M(X ×Spec(Z) Spec(Q))
It follows that the functor j∗ restricts to a functor

j∗ : DMgm(Z)→ DMgm(Q)
There is a Betti realization functor DMgm(Q) → D(Z) constructed in [LW13, Section 3.3.].

We denote by B its precomposition with the map j∗ and call it the Betti realization of a motive
on Spec(Z). This is a symmetric monoidal triangulated functor. Its restriction to smooth schemes
is understood via the following proposition.
Proposition 3.4. Let X be a smooth scheme over Z, then, there is an isomorphism

Hq(B(M(X))) ∼= Hq(X(C),Z)
where the right hand side denotes the singular homology groups of X(C) seen as a complex manifold.

We will also need the following fact.
Proposition 3.5. Let A be a bounded chain complex of finitely generated abelian groups. Then
there is an isomorphism B(A(q)) ∼= A in the category D(Z).
Proof. Let Dc(Z) be the full subcategory of D(Z) spanned by bounded chain complexes of finitely
generated abelian groups. Let cq : Dc(Z)→ DMgm(Z) be the functor sending A to A(q). We want
to prove that B◦cq is isomorphic to the identity. Since both B◦cq and id are triangulated, it suffices
to show that they coincide on Z. In other words, we are reduced to proving that B(Z(q)) ∼= Z.
Since the functor B is symmetric monoidal, the result is true for q = 0 and it suffices to prove that
B(Z(1)) ∼= Z. We have an isomorphism M(P1) ∼= Z(0)⊕ Z(1)[2]. Hence we have

Z⊕ Z[2] ∼= B(M(P1)) ∼= B(Z)⊕B(Z(1))[2]
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which gives the desired answer. �

4. Mixed Tate motives

We denote by DMT(Z) the full triangulated subcategory of DM(Z) generated by the motives
Z(q) for all integers q. We have the following identities in the category DMT(Z):

DMT(Z)(Z(i)[m],Z(j)[n]) = 0, if j < i,

DMT(Z)(Z(i)[m],Z(i)[n]) = 0, if m 6= n,

DMT(Z)(Z(i)[n],Z(i)[n]) = Z.

They can be deduced from Theorem 3.2 and the fact that similar results hold in DM(Q) and
DM(Fp). It follows that the triangulated category DMT(Z) satisfies the axioms of a triangulated
category of Tate type [Lev93, Definition 1.1.]. The first consequence (cf. [Lev93, Lemma 1.2.]) is
that for any object M in DMT(Z), there is a functorial weight filtration

. . .→W≤nM →W≤n+1M → . . .→M

where W≤n is the right adjoint to the inclusion functor in from the full triangulated subcategory
of DMT(Z) generated by the objects Z(−q) with q ≤ n. These maps fit into cofiber sequences

W≤n−1M →W≤nM → grWn M

in which grWn M is of the form A(−n) for some bounded chain complex of finitely generated Z-
module A. In fact, as observed by Kahn in [Kah00], the functor A 7→ A(−n) is an equivalence
from the triangulated category of bounded chain complexes of finitely generated Z-modules to
the full triangulated subcategory of DMT(Z) generated by Z(−n). Note that Levine works with
Q-coefficients, however a careful inspection of his proof shows that it also works with Z-coefficients.

Lemma 4.1. For any object M of DMT(Z), the weight filtration is bounded, i.e. W≤nM = 0 for
n small enough and W≤nM →M is an isomorphism for n big enough.

Proof. Since the functorsW≤n are triangulated functors, the class of objects whose weight filtration
is bounded is a triangulated subcategory of DMT(Z), moreover it contains all the generators, hence
it has to be the whole category. �

Theorem 4.2. The category DMT(Z) satisfies the Beilinson–Soulé vanishing conjecture. That
is, we have the identity

DMT(Z)(Z(0)[0],Z(q)[n]) = 0
whenever q ≥ 0 and n < 0 and whenever q > 0 and n ≤ 0.

Proof. This statement also appears as [Sou15, Theorem 2.10.]. According to Theorem 3.2, it suffices
to prove that DMT(Q) and all the categories DMT(Fp) satisfy the Beilinson–Soulé vanishing
conjecture with Z coefficients. As explained in [Kah05, Lemma 24], we are reduced to proving
that, for k = Q and k = Fp, the category DMT(k)Z/l satisfies the Beilinson–Soulé vanishing
conjecture for all prime number l and that DMT(k)Q satisfies the Beilinson–Soulé vanishing
conjecture. The case of Z/l with l prime to the exponent characteristic of k follows from the
Beilinson–Lichtenbaum conjecture which has now been proved by Voevosdky in [Voe11]. The case
DMT(Fp)Z/p follows from [GL00, Theorem 1.1.].

For k a field, we have the identity

DMT(k)Q(Q(0)[0],Q(i)[2j − i]) ∼= (Ki(k)⊗Q)(j)

where the right hand side denotes the weight j eigenspace of the Adams operations action on
algebraic K-theory. For finite fields, work of Quillen has shown that K∗(k) ⊗Q is trivial which
implies the vanishing conjecture. For k = Q or more generally a number field, Borel has explicitly
computed K∗(k)⊗Q and it follows from his computation that the vanishing conjecture is also true
in this case (see [Kah05] for references). �



8 GEOFFROY HOREL

We denote by DMT(Z)≥0 (resp. DMT(Z)<0) the full subcategory of DMT(Z) spanned by
objects M such that for each integer n, the motive grWn (M) has homology concentrated in non-
negative (resp. negative) degree.

Theorem 4.3 (Levine). The pair (DMT(Z)≥0,DMT(Z)<0) is a t-structure on DMT(Z).

Proof. See [Lev93, Theorem 1.4.]. Again, Levine restricts to Q coefficients but this restriction
plays no role in the proof. �

Recall that we have a Betti realization functor B : DMgm(Z)→ D(Z), we still denote by B its
restriction to DMT(Z) ⊂ DMgm(Z).

Proposition 4.4. The functor B is compatible with the t-structure (Definition 2.3).

Proof. We prove that B(DMT(Z)≥0) ⊂ D(Z)≥0, the other case is similar. Let M be a motive in
DMT(Z), then according to Lemma 4.1, M has a finite filtration.

0 = W≤n(M)→W≤n+1(M)→ . . .→W≤n+mM = M

Assume that M is in DMT(Z)≥0. We show by induction on q that B(W≤n+qM) in in D(Z)≥0.
For q = 1, this follows from Proposition 3.5 and the fact that W≤n+1M is isomorphic to A(−n−1)
with A a chain complex with zero homology in negative degree. Assume that this is true for q. We
have a cofiber sequence

W≤n+qM →W≤n+q+1M → grWn+q+1M

with grWn+q+1M isomorphic to A(−n − q − 1) with A a chain complex whose homology is zero in
negative degree. Applying B to this cofiber sequence, we find that B(W≤n+q+1M) is in D(Z)≥0
as desired. �

Proposition 4.5. The functor B reflects the zero object.

Proof. The previous proposition implies that B sends DMT(Z)♥ to D(Z)♥. We denote by B♥
the restriction of B to DMT(Z)♥. By Proposition 2.4, the functor B♥ is an exact functor between
abelian categories. We first prove thatB♥ reflects the zero object. LetX be an object of DMT(Z)♥
that is sent to 0 by B♥. According to [Lev93, Theorem 1.4.], the weight filtration for X has the
form

0 = W≤nX ⊂W≤n+1X ⊂ . . . ⊂W≤n+qX = X

In particular, we have a short exact sequence
0→ B♥(W≤n+q−1X)→ B♥(W≤n+qX)→ B♥(grWn+qX)→ 0

Since we have assumed thatB♥(W≤n+qX) = 0, we find thatB♥(W≤n+q−1X) = 0 andB♥(grWn+qX) =
0. The object grWn+qX is isomorphic to A(−n − q) with A a finitely generated abelian group.
Therefore, by Proposition 3.5, B♥(grWn+qX) ∼= A. Since B♥(grWn+qX) is trivial, we find that
grWn+q(X) = 0. An easy inductive argument shows that B♥(X) = 0.

Now we prove that B reflects the zero object. Let X ∈ DMT(Z) be such that B(X) = 0.
Assume that the map t≥nX → X is an isomorphism. Then, there is a cofiber sequence

t≥n+1X → t≥nX → Y [n]
where Y is in DMT(Z)♥. Applying B to this cofiber sequence, we find a cofiber sequence

B(t≥n+1X)→ B(t≥nX)→ B♥(Y )[n]
Looking at the induced exact sequence in degree n and n − 1, we find that B♥(Y ) is 0 which
implies by the previous paragraph that Y = 0. Hence, we have proved that t≥n+1X → X is an
isomorphism. An obvious induction then shows that X is in

⋂
n∈Z DMT(Z)≥n and hence is 0 by

non-degeneracy of the t-structure [Lev93, Theorem 1.4.i]. �

Corollary 4.6. Same notations, a mixed Tate motive is in DMT(Z)≥0 if and only if B(X) is in
D(Z)≥0.
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Proof. One direction is given by Proposition 4.4. Now assume that B(X) ∈ D(Z)≥0. We have a
cofiber sequence

t≥0X → X → t<0X

Applying B, we find a cofiber sequence
B(t≥0X)→ B(X)→ B(t<0X)

From this cofiber sequence, we deduce that B(t<0X) is in D(Z)≥0 and from Proposition 4.4, we
find that B(t<0X) is in D(Z)<0. It follows that B(t<0X) = 0 and by Proposition 4.5, we deduce
that t<0X = 0. �

Corollary 4.7. Let f : M → N be a map in DMT(Z). Then t<n(f) is an isomorphism if and
only if t<nB(f) is an isomorphism.

Proof. Let us assume that t<n(f) is an isomorphism. Let us complete f in a cofiber sequence

M
f−→ N → Q

Hitting this cofiber sequence with the triangulated functor grWq for all q, we find that t<n(f) is
an isomorphism if and only if grWq Q has homology concentrated in degree ≥ n for all q. In other
words, t<n(f) is an isomorphism if and only if Q is in DMT(Z)≥n. By the previous corollary,
this happens if and only if B(Q) is in D(Z)≥n. Writing the long exact sequence associated to the
cofiber sequence

B(M) B(f)−−−→ B(N)→ B(Q),
we find that this happens if and only if t<nB(f) is an isomorphism. �

5. Configuration spaces and the scanning map

Given two monic polynomials f = xd + ad−1x
d−1 + . . . + a0 and g = xd + bd−1x

d−1 + . . . + b0
with coefficients in a commutative ring R, one can form their resultant Res(f, g). A definition can
be found in [Lan02, IV,8]. The important property of this construction is that, if R is a field, the
resultant is zero if and only if the two polynomials have a common root in some extension of R
(cf. [Lan02, IV, Corollary 8.4.]).

We can then define Fd as the Zariski open subset of A2d = Spec(Z[a0, . . . , ad−1, b0, . . . , bd−1])
complement of the hypersurface of equation

Res(xd + ad−1x
d−1 + . . .+ a0, x

d + bd−1x
d−1 + . . .+ b0) = 0

Thus, for k a field, the k-points Fd(k) is the set of pairs of monic polynomials (f, g) with no
common factor. We think of Fd as the scheme of degree d maps from P1 to P1 sending ∞ to 1. A
point (f, g) of Fd represents the map x 7→ f(x)

g(x) from P1 to P1.
We denote by Map∗(P1(C),P1(C)) the topological space of maps from P1(C) to P1(C) sending

the point at ∞ to 1. We have an isomorphism
π0[Map∗(P1(C),P1(C))] ∼= π0(Ω2S2) ∼= π2(S2) ∼= Z

This isomorphism is implemented by the degree. We denote by Map∗(P1(C),P1(C))d the com-
ponent corresponding to the integer d. Denoting Fd(C) the set of complex points of Fd with its
complex manifold structure, there is a continuous inclusion

Fd(C)→ Map∗(P1(C),P1(C))d
which sends (f, g) to the meromorphic function f

g .
There is a map sd : Ad → A2d given by the formula

sd(a0, . . . , ad−1) = (a0, . . . , ad−1, a0 + a1, a1 + 2a2, . . . , ad−2 + (d− 1)ad−1, ad−1 + d)
If we think as Ad(R) as the set of monic polynomials over R of degree d and as A2d(R) as the set
of pairs of monic polynomials over R of degree d, the map sd sends the polynomial f to (f, f +f ′).
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We define the scheme Cd by the following pullback square in schemes

Cd

��

// Fd

��
Ad

sd

// A2d

where the map Fd → A2d is the obvious inclusion. For k a field, the set Cd(k) is the set of monic
degree d polynomials over k such that f and f + f ′ are coprime. Equivalently, this is the set of
polynomials f that are coprime with their derivative. In particular, if k is an algebraically closed
field, Cd(k) gets identified with the set of unordered configurations of d distinct points in k by
sending a polynomial f to its set of roots. If k = C, the complex manifold Cd(C) is exactly the
complex manifold of unordered configurations of points in the complex line.

By definition, the scheme Cd comes with a map Cd → Fd. We still denote this map by sd as
this is just the restriction of sd to an open subset of Ad. We call it the degree d scanning map.
This is justified by the observation that the composite

Cd(C) sd(C)−−−−→ Fd(C)→ Map∗(P1(C),P1(C)d
is homotopic to the topological scanning map described by Segal in [Seg73, Section 3].

6. Proof of the main theorem

Our first job is to prove that the motives M(Cd) and M(Fd) are in DMT(Z). We will rely on
the following proposition.

Proposition 6.1. Let ∅ = Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊂ X be a stratification of a smooth scheme X
by closed subschemes. Assume that M(X) is mixed Tate, that for all k, the scheme Zk − Zk−1 is
smooth and that the motive M(Zk − Zk−1) is mixed Tate. Then M(X − Zn) is mixed Tate.

Proof. We prove by induction on k that M(X − Zk) is mixed Tate. The case k = 0 follows from
the hypothesis. Assume that M(X−Zk) is mixed Tate. The scheme Zk+1−Zk is closed in X−Zk,
therefore, applying the Gysin triangle 3.3 to this pair, we get a cofiber sequence

M(X − Zk+1)→ M(X − Zk)→ M(Zk+1 − Zk)(nk)[2nk]

where nk denotes the codimension of Zk+1 −Zk in X −Zk. It follows that M(X −Zk+1) is mixed
Tate as desired. �

Now, we use the paper [FW15]. The authors of this paper study the family of varieties Polyd,mn .
They observe in the paragraph following [FW15, Definition 1.1.] that Polyd,21 is isomorphic to Fd
and Polyd,12 is isomorphic to Cd.

Lemma 6.2. The motives M(Polyd,mn ) are mixed Tate motives. In particular, for all d, M(Cd)
and M(Fd) are mixed Tate motives.

Proof. We proceed by induction on d. This is evident for d = 0. Let d ≥ 1. When d ≤ n, the
assertion follows from [FW15, Equation 3.1.]. In the other cases, as explained in [FW15, Equation
3.2.], we have a descending filtration

Adm = Rd,mn,0 ⊃ R
d,m
n,1 ⊃ R

d,m
n,2 ⊃ . . . ⊃ ∅

where each Rd,mn,k is a closed subscheme of Adm. By [FW15, Equation 3.3.], we have an isomorphism

Rd,mn,k −R
d,m
n,k+1

∼= Polyd−kn,mn ×Ak

Using our induction hypothesis and Proposition 6.1, we find that M(Polyd,mn ) ∼= M(Adm − Rd,mn,1 )
is mixed Tate. �
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As explained in [Caz12, Proposition 3.1.], the scheme
⊔
d Fd is equipped with a graded monoid

structure that we will denote ⊕. Let us pick a Z-point u in F1, we get a map α : Fd → Fd+1 as
the composite

Fd × Spec(Z) id×u−−−→ Fd × F1
−⊕−−−−→ Fd+1

Similarly, identifying P1(C) with S2, a choice of pinch map P1(C) → P1(C) ∨P1(C) induces
a multiplication

Map∗(P1(C),P1(C))×Map∗(P1(C),P1(C))→ Map∗(P1(C),P1(C))

which is additive with respect to the degree. The point u in F1 induces a point v in Map∗(P1(C),P1(C))1
and we get a map

β : Map∗(P1(C),P1(C))d → Map∗(P1(C),P1(C))d+1

constructed as before.

Proposition 6.3. The diagram

Fd(C)

��

α // Fd+1(C)

��
Map∗(P1(C),P1(C))d

β
// Map∗(P1(C),P1(C))d+1

commutes in the homotopy category of spaces.

Proof. The scheme over C,M := (
⊔
d Fd)×Spec(C) can be seen as a graded monoid in the category

MS(C) of motivic spaces over C. Let P̃1 be a fibrant replacement of P1 in the model category
MS(C)∗ of pointed objects of MS(C). We can form the object

ΩP1
(P1) := Map∗(P

1, P̃1)

where Map∗ denotes the inner Hom in the category MS(C)∗. The object ΩP1(P1) splits as a
disjoint union of components indexed by the degree. We denote by ΩP1

d (P1) the component of
degree d. There is a pinch map P1 → P1 ∨P1 in MS(Z) (see [Caz12, Definition A.2.]). It follows
that ΩP1(P1) has a binary multiplication. Moreover, this multiplication is additive with respect
to the degree, we can thus form a map γ : ΩP1

d (P1)→ ΩP1

d+1(P1) as the composite

ΩP1

d (P1)× ∗ id×∗−−−→ ΩP1

d (P1)× ΩP1

1 (P1)→ ΩP1

d+1(P1)

where the base point ∗ in ΩP1

1 (P1) is induced from the chosen point in F1 via the composite

F1 → Map∗(P
1,P1)→ Map∗(P

1, P̃1)

Using [Caz12, Remark A.7.] and the fact that taking complex points is a weak equivalence
preserving functor from MS(Z) to topological spaces, we find that the diagram

Fd(C)

��

α // Fd+1(C)

��
ΩP1

d (P1)(C)
γ
// ΩP1

d+1(P1)(C)

commutes in the homotopy category of spaces.
By adjunction, we have a map of topological spaces

j : ΩP1
(P1)(C)→ Map∗(P1(C), P̃1(C))



12 GEOFFROY HOREL

If we give the right hand side, the multiplication coming from the pinch map on P1(C) obtained by
taking the complex points of the pinch map P1 → P1∨P1, the map j commutes with multiplication
on the nose. We thus get a commutative square

ΩP1

d (P1)(C) γ //

j

��

ΩP1

d+1(P1)(C)

j

��
Map∗(P1(C), P̃1(C))d

β′
// Map∗(P1(C), P̃1(C))d+1

where β′ is defined as the composite
id× v : Map∗(P1(C), P̃1(C))d → Map∗(P1(C), P̃1(C))d ×Map∗(P1(C), P̃1(C))1

and the multiplication map
Map∗(P1(C), P̃1(C))d ×Map∗(P1(C), P̃1(C))1 → Map∗(P1(C), P̃1(C))d+1

The motivic space P̃1 is weakly equivalent to P1 which implies that their complex points are
weakly equivalent as topological spaces. Moreover, the motivic pinch map P1 → P1 ∨P1 induces
a map which is homotopic to the standard pinch map P1(C) → P1(C) ∨ P1(C). It follows that
the map β′ represents the same map as the map β in the homotopy category of spaces. Therefore,
we get the desired result by gluing together the above two commutative squares. �

Proposition 6.4. The maps α : Fd → Fd+1 induce isomorphisms
t<dM(α) : t<dM(Fd)→ t<dM(Fd+1)

Proof. By Corollary 4.7, it suffices to prove that BM(α) is an isomorphism in homology in degree
smaller than d. By Proposition 6.3, the following square commutes up to homotopy.

Fd(C) α //

id
��

Fd+1(C)

id+1

��
Map∗(P1(C),P1(C))d

β
// Map∗(P1(C),P1(C))d+1

where the maps id and id+1 are the obvious inclusions. According to [Seg79, Proposition 1.1.], the
maps id and id+1 induce isomorphisms in homology up to degree d, on the other hand, the map
β is a homotopy equivalence since Map∗(P1(C),P1(C)) is a loop space. It follows that the map
BM(α) induces an isomorphism in homology in degree smaller than d. �

We are now ready to prove our main theorem. We denote by l(d) the function min(d, bd/2c+2).
Note that for d ≥ 3 this coincides with bd/2c+ 2.

Theorem 6.5. The sequence of motives M(Cd) has homological stability with slope l(d).

Proof. By Lemma 2.8, it suffices to prove that the scanning maps sd : Cd → Fd induce an isomor-
phism

t<l(d)M(sd) : t<l(d)M(Cd)→ t<l(d)M(Fd)
By Corollary 4.7, we are reduced to proving that BM(sd) : B(M(Cd)) → B(M(Fd)) induces an
isomorphism in homology in degree < l(d). By Proposition 3.4, it suffices to prove that the map

H∗(Cd(C),Z)→ H∗(Fd(C),Z)
induce an isomorphism for ∗ < l(d). We have a sequence of maps

H∗(Cd(C),Z)→ H∗(Fd(C),Z)→ H∗(Map∗(P1(C),P1(C))d,Z)
The composite of these two maps is an isomorphism in homology in degree < l(d) because we are
in the stable range for H∗(Cd(C),Z). The second map induce an isomorphism for ∗ < l(d) (and
even for ∗ < d) by [Seg73, Theorem 3]. �
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Theorem 1 now follows easily.

Corollary 6.6. There is an isomorphism

Hi(Cd,Z(q)) ∼= Hi(Cd+1,Z(q))

for any q and i < l(d).

Proof. We have a zig-zag of maps

M(Cd)
M(sd)−−−−→ M(Fd)

M(α)−−−→ M(Fd+1) M(sd+1)←−−−−− M(Cd+1)

After hitting this zig-zag with t<l(d), all the maps become isomorphisms by the proof of the
previous theorem. As explained in Remark 2.2, the functor t<l(d) is the left adjoint to the inclusion
DMT(Z)<l(d) → DMT(Z). Moreover for i < l(d), the object Z(q)[i] is in DMT(Z)<l(d). It
follows that each of the map in the above zig-zag induce an isomorphism when we apply the
functor DMT(Z)(−,Z(q)[i]). �

We denote by F∞ the homotopy colimit, in the model category MS(Z), of the diagram

F1
α−→ F2

α−→ . . .

where α : Fd → Fd+1 is the map constructed above.

Proposition 6.7. The composite Cd → Fd → F∞ induces an isomorphism

Hi(F∞,Z(q))→ Hi(Cd,Z(q))

for any q and i < l(d).

Proof. By Proposition 6.4 and an argument analogous to the previous corollary, we see that the
map Fd → F∞ induces an isomorphism

Hi(F∞,Z(q))→ Hi(Fd,Z(q))

for i < d and any q. In the proof of Theorem 6.5, we prove that the map

t<l(d)M(sd) : t<l(d)M(Cd)→ t<l(d)M(Fd)

is an isomorphism which again by the method of the previous corollary implies that the map

Hi(Fd,Z(q))→ Hi(Cd,Z(q))

is an isomorphism for i < l(d). These two fact together imply the desired result. �

Note that the functor from smooth schemes over Z to topological spaces X 7→ X(C) extends
uniquely to a homotopy colimit preserving functor MS(Z) → S. We can thus make sense of the
topological space F∞(C) and it is equivalent to the homotopy colimit of the diagram

F1(C) α(C)−−−→ F2(C) α(C)−−−→ . . .
α(C)−−−→ Fn(C) α(C)−−−→ . . .

Proposition 6.8. There is a weak equivalence F∞(C) ' Ω2
0S

2

Proof. The homotopy colimit diagram defining F∞(C) maps to a similar diagram

Map∗(P1(C),P1(C))1 → Map∗(P1(C),P1(C))2 → . . .→ Map∗(P1(C),P1(C))n . . .

in which all the maps are weak equivalences. Moreover by [Seg79, Proposition 1.1.], the map
Fn(C) → Map∗(P1(C),P1(C))n induces an isomorphisms in a range of homotopy groups that
grows to∞ with n. It follows that the space F∞(C) is weakly equivalent to Map∗(P1(C),P1(C))0.

�
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