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Abstract. We use Galois group actions on étale cohomology to prove results of formal-
ity for dg-operads and dg-algebras with torsion coefficients. Our theory applies, among
other related objects, to the dg-operad of singular chains of the operad of little disks and
to the dg-algebra of singular cochains of the configuration space of points in the complex
space. The formality that we obtain is only up to a certain degree, which depends on
the cardinality of the field of coefficients.
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1. Introduction

The notion of formality was first introduced in the setting of rational homotopy, in which
a topological space X is said to be formal if its Sullivan algebra of polynomial forms A∗pl(X)

is connected to its cohomology H∗(X;Q) by a string of quasi-isomorphisms of commutative
dg-algebras over Q. In this case, any invariant of the rational homotopy type of X can be
computed from the cohomology algebra of X. This notion may be extended to coefficients in
an arbitrary commutative ring R, by asking that the complex of singular cochains C∗(X,R)
is quasi-isomorphic to its cohomology as dg-algebras. We point out here that in general the
singular cochains do not have the structure of a commutative dg-algebra so the question
of whether cochains and cohomology are quasi-isomorphic as commutative dg-algebras does
not even make sense. Although not strictly commutative, the singular cochains have the
structure of an E∞-algebras and this object is a very strong invariant of the homotopy type
of the space by a result of Mandell [Man06]. Therefore, one could also ask whether C∗(X,R)
and H∗(X,R) are quasi-isomorphic as E∞-algebras. However, this almost never happens
if R is not a Q-algebra (for instance if R = Fp, formality in the E∞-context implies that
Steenrod operations are trivial). Even though it is not the case that the homotopy type of the
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dg-algebra C∗(X,R) is a complete invariant of the R-homotopy type of X, several invariants
of X can be computed from it, such as the homology of ΩX with its Pontryagin products
structure or the string topology of X when it is an orientable manifold. Furthermore, when
R is a field of characteristic zero, the above notions of formality are equivalent by a result
of Saleh [Sal17].

The idea that purity implies formality goes back to Deligne, Griffiths, Morgan and Sulli-
van, who used the Hodge decomposition to show that compact Kähler manifolds are formal
over Q [DGMS75]. Since then, Hodge theory has been used successfully several times to
prove formality results over Q in different settings (see for instance [Mor78], [GNPR05],
[Dup16], [Pet14], [CH20]). Using the methods of étale cohomology, Deligne [Del80] gave
an alternative proof of formality for the Q`-homotopy type of smooth and proper complex
schemes. However, it seems that the full power of Galois actions has not been further ex-
ploited to address formality questions especially in the case of torsion coefficients. Note
that while Hodge theory is confined to rational coefficients, étale cohomology with torsion
coefficients is perfectly well-defined and possesses interesting Galois group actions, making
it a very valuable tool to study formality in the torsion case.

The theory of weights on the cohomology of algebraic varieties rests on fundamental
ideas of Grothendieck and Deligne, and is strongly influenced by Grothendieck’s philosophy
of mixed motives. Even though a category of motives satisfying all the desired properties
is still out of reach, the theory of weights is well-understood on the rational cohomology of
complex algebraic varieties and on the étale cohomology of varieties over finite fields. In the
case of complex varieties, the cohomology groups support a mixed Hodge structure which
is pure for smooth projective varieties. Likewise, the étale cohomology groups of a variety
defined over a finite field are acted on by the absolute Galois group of the field. Deligne
[Del80] showed that the eigenvalues of the Frobenius are in general Weil numbers and that
for smooth and projective varieties, the eigenvalues of the Frobenius action on the n-th
cohomology groups are Weil numbers of pure weight n. Let us mention at this point that
the Frobenius also acts on the étale cohomology groups with torsion coefficients which is key
to the applications we have in mind. It is also important to note that the purity property
holds more generally than just for smooth projective varieties: there are many interesting
examples of singular and open varieties whose weights in cohomology turn out to be pure
in a more flexible way which we call α-purity.

The notion of formality makes sense (and has proven to be very useful) in many other
algebraic contexts outside dg-algebras, such as operads, operad algebras and symmetric
monoidal functors. In this paper, we use the theory of weights in étale cohomology to prove
partial results of the type “purity implies formality” when such algebraic structures arise from
the category of algebraic varieties. Although the methods and conditions become quite tech-
nical, the theory has applications to very classical and well-known objects. In particular, we
address questions of Salvatore and Beilinson on formality with torsion coefficients for config-
uration spaces and little disks operads respectively. The results that we obtain have potential
applications in diverse situations, such as to the study of Massey products for complements of
subspace arrangements, to embedding calculus, via the Vassiliev-Goodwillie-Weiss spectral
sequence, or to deformation quantization à la Kontsevich with torsion coefficients.

Let us briefly explain how purity can be used to prove formality on a simple example.
Consider the étale cohomology of X = Pnk where k = Fq is a finite field. In that case, the
vector space Hi

et(Xk,Q`) is of dimension 1 if i ≤ 2n is even and of dimension zero otherwise.
Moreover the Frobenius of k acts by multiplication by qi on the 2i-th cohomology group. Let
us write A = C∗et(X,Q`) the dg-algebra of étale cochains on X. The Frobenius also acts on
A and we can thus consider the subalgebra B where we only keep the generalized eigenspaces
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of the Frobenius for the eigenvalues that are powers of q. This dg-algebra is quasi-isomorphic
to A as the other eigenspaces will not contribute to the cohomology. We can then split B as
B = ⊕i∈ZB(i) where B(i) is the generalized eigenspace for the eigenvalue qi. Observe that
the cohomology of B(i) will be concentrated in degree 2i. Moreover, this decomposition
is compatible with the multiplication. We have thus produced a multiplicative splitting of
the Postnikov filtration of B which is another way to phrase formality. There is a technical
difficulty with this sketch as in general, the dg-algebra A will not be finite dimensional and
it does not make sense to decompose it as a sum of generalized eigenspaces. However, this
issue can be fixed as we will see. If we wanted instead to prove formality of A = C∗et(X,F`),
the above sketch would also work modulo the fact that qi can be equal to 1 in F`, since F×`
is a finite group. Therefore, we have a decomposition B = ⊕i∈Z/hB(i) where h is the order
of q in F×` . This splitting is insufficient to prove formality in full generality but will imply
formality when h ≥ n.

We now spell out in more detail the results that we prove in this paper. Let K be a p-adic
field and K its algebraic closure. We assume that K is embedded in C. We will denote by
SchK the category of schemes over K that are separated and of finite type. For X ∈ SchK ,
the Galois action on étale cohomology actually exists at the cochain level and there exists a
functorial dg-algebra C∗et(XK ,F`) endowed with an endomorphism ϕ corresponding to the
choice of a Frobenius lift. The dg-algebra of étale cochains relates to singular cochains as
follows. Denote by Xan the complex analytic space underlying XC = X ×K C. Then we
have quasi-isomorphisms

C∗sing(Xan,F`)←− C∗et(XC,F`) −→ C∗et(XK ,F`),
giving symmetric monoidal natural transformations of functors.

Let Fq be the residue field of K and denote by h the order of q in F×` . Let α be a positive
rational number, with α < h. We say that Hn

et(XK ,F`) is a pure Tate module of weight
αn if the only eigenvalue of the Frobenius is qαn, with αn ∈ N. If αn /∈ N we impose that
Hn
et(XK ,F`) = 0.
To study the homologically graded case, we dualize the functor C∗et(−,F`). As a result,

we obtain a lax symmetric monoidal ∞-functor Cet∗ (−,F`) of étale chains from N(SchK)
to the ∞-category of chain complexes equipped with an automorphism. This allows us to
prove the following result:

Theorem 5.2. Let P be an operad in sets and let X be a P -algebra in SchK . Let N =
b(h − 1)/αc. Assume that for each color c of P , the cohomology Hn

et(X(c)K ,F`) is a pure
Tate module of weight αn, for all n. Then:

(1) There is an N -equivalence C∗(Xan,F`) ' H∗(Xan,F`) in the ∞-category of P -
algebras in Ch∗(F`).

(2) If P is admissible and Σ-cofibrant, then C∗(Xan,F`) is N -formal as a dg-P -algebra.

By definition, an N -equivalence is a map of algebras, which induce isomorphisms in ho-
mology only up to degree N . The condition that the operad P is Σ-cofibrant and admissible
is a technical condition that is only needed in order to transfer N -formality from the ∞-
category of P -algebras to the category of P -algebras.

We mention a few examples where this theorem applies. Denote by M0,n the moduli
space of stable algebraic curves of genus 0 with n marked points. The operations that relate
the different moduli spaces M0,n identifying marked points form a cyclic operad M0,• in
the category of smooth proper schemes over Z, whose cohomology is pure. We deduce that
the cyclic dg-operad C∗((M0,•)an,F`) is 2(` − 2)-formal (Theorem 5.3). This extends the
formality ofM0,• over Q proved in [GNPR05] to formality with torsion coefficients.
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Using the action of the Grothendieck-Teichmüller group, we can also apply this machinery
to the little disks operad D even though it is not an operad in the category of schemes. We
prove (`− 2)-formality for the dg-operad C∗(D,F`). A similar result applies to the framed
little disks (Theorems 5.4 and 5.8). A direct consequence is the formality of the (` − 1)-
truncated operad C∗(D≤(`−1),F`), where D≤n denotes the truncation of D in arity less than
or equal to n. This is optimal, since C∗(D≤`,F`) is not formal (see Remark 5.6). This result
potentially paves the way for a version of a Kontsevich Formality Theorem over a field of
positive characteristic. Also, the above method is applied to higher dimensional little disks
operads in the work [BdBH21] of the second author with Pedro Boavida de Brito, leading to
applications to embedding calculus. The only extra ingredient needed is the construction of
a Frobenius automorphism on the chains over those operads. We point out that Beilinson,
in a letter to Kontsevich was conjecturing that the weight filtration in the triangulated
category of motives could be used in order to prove formality of the little disks operad over
the integers. Remark 5.6 shows that this was overly optimistic and indicates that our result
might be the closest one can get to answering Beilinson’s question.

Theorem 5.2 is restricted to non-negatively graded homological algebras. For cohomolog-
ical dg-algebras we prove the following:

Theorem 7.2. Let X ∈ SchK be a scheme over K. Assume that for all n, Hn
et(XK ,F`) is

a pure Tate module of weight αn. Then the following is satisfied:
(i) If α(k − 2)/h /∈ Z then all k-tuple Massey products are trivial in H∗(Xan,F`).
(ii) If Hi(Xan,F`) = 0 for all 0 < i ≤ r then Hn(Xan,F`) contains no non-trivial

Massey products for all n ≤ dhrα + 2r + 1e.
(iii) The dg-algebra C∗sing(Xan,F`) is N -formal, with N = b(h− 1)/αc.

The above result applies, for instance, to codimension c subspace arrangements defined
over K (see Theorem 7.12). In particular, it applies to configuration spaces of points in
An. In Theorem 7.14 we show that the dg-algebra C∗sing(Fm(Cd),F`) is formal up to a
degree that depends on ` and d. This in particular gives full formality of C∗sing(Fm(Cd),F`)
whenever ` ≥ (m − 1)d + 2. These results partially answer a question raised at the end of
[Sal20], about the degree of obstructions to formality over F`. As another application, the
formality of the dg-algebra C∗sing(M0,n+1,F`), for all ` ≥ n, is used by Dotsenko in [Dot22]
to estimate the Betti numbers with torsion coefficients of the free loop spaces LM0,n+1.

Finally, let us mention some other related work. Ekedahl [Eke86] proved that for any
prime `, there exists a smooth simply connected complex projective surface X with a non-
zero Massey product in H3(X,F`), which is a well-known obstruction to formality. This
shows that in general the question of formality with coefficients in a finite field is much more
delicate than in the rational case. More recently, Matei [Mat06] showed that for any prime
`, there is a complement of hyperplane arrangements X in C3 with a non-zero triple Massey
product in H2(X,F`). Note that Matei’s examples have torsion-free pure cohomology. We
refer the reader to Remark 7.13 for a discussion of this result in relation to our result. Also,
in [Sal20], Salvatore initiated the study of formality over arbitrary rings for the configuration
spaces Fm(Rd) of m points in Rd. He showed that if m ≤ d, then Fm(Rd) is formal over
any ring, but that Fm(R2) is not formal over F2 when m ≥ 4. Note that in all of the
above cases, the corresponding spaces are known to be formal over the rationals. There
is an obstruction theory via Hochschild cohomology developed in [BB20], which allows to
deduce formality over Z from formality over Q in certain quite restricted situations with
torsion-free Hochschild cohomology. For instance, this gives formality over Z for complex
projective spaces. More generally, El Haouari [EH92] showed that a finite simply connected
CW-complex is formal over Q if and only if it is formal over F` for all primes ` but a finite
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number. Since N -formality implies formality for sufficiently large N , our results specify for
which primes ` we do have formality over F`.

Outline of the paper. Let us briefly summarize the structure of this paper. In Section 2 we
collect the main definitions on weights and Tate modules. We also introduce Tate complexes
as more flexible structures than complexes of Tate modules. In Section 3 we construct the
functor of étale cochains from finite type schemes over K to cochain complexes equipped
with automorphisms and compare it with the singular cochains via Artin’s theorem. The
next two sections deal with the homologically graded case. In Section 4 we give a criterion of
N -formality for symmetric monoidal functors from chain complexes endowed with a certain
Z/hZ-grading. We apply this criterion in Section 5, to prove our main results in their chain
version. We then address the cohomologically graded case. Section 6 is the analogue of
Section 4 for the case of cohomological dg-algebras. We study Massey products and give a
criterion of formality for dg-algebras endowed with a Z/hZ-graded weight decomposition.
These results are applied in Section 7 to prove our main results in the cochain setting.

Acknowledgments. We would like to thank Dan Petersen, Paolo Salvatore and Alberto
Vezzani for enlightening conversations. We also thank the anonymous referee for several
useful comments, and especially for suggesting a better proof of Theorem 2.11 using locally
finite dimensional modules.

Notation. Throughout this paper, we fix a prime number p. Denote by K a p-adic field
(i.e a finite extension of Qp) and by q = pk the cardinality of its residue field. We also
assume that a choice of an embedding of K in C has been made. It follows that there is a
preferred choice of embedding of the algebraic closure of K in C, namely we can define K
as the set of complex numbers that are algebraic over K. We denote by ` a prime number
` 6= p and write h for the order of q in the group F×` . All schemes over K will be assumed
to be separated and of finite type.

2. Tate modules

In this section we introduce Tate modules and prove a splitting lemma for such objects.
We then introduce Tate complexes as more flexible objects than a complexes of Tate modules
and compare their categories. This will be used in Section 5, where we restrict our study to
schemes whose complex of étale chains lands in the category of Tate complexes.

2.1. Locally finite dimensional k[ϕ]-modules. We start with some general algebraic
considerations. Let k be a field. We consider the category Modk[ϕ] of k[ϕ]-modules. We
will typically denote an object of this category as a pair (V, ϕ) where V is a k-vector space
and ϕ is a k-linear endomorphism of V . We say that such a module (V, ϕ) is locally finite
dimensional if any element of V lives in a finite dimensional subspace of V that is stable
under ϕ. We denote by Modlfdk[ϕ] the category of such modules.

The following proposition is elementary.

Proposition 2.1. A k[ϕ]-module (V, ϕ) is locally finite dimensional if and only if it can be
written as a filtered colimit of k[ϕ]-modules whose underlying vector space is finite dimen-
sional.

Construction 2.2. Any locally finite dimensional k[ϕ]-module (V, ϕ) admits a decomposi-
tion as a direct sum of characteristic subspaces

V =
⊕

P∈Spec(k[ϕ])

VP
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where VP =
⋃
n KerP (ϕ)n (we make the abuse of using the same notation for a prime ideal

of k[ϕ] and a polynomial generating it). Observe that each space in the above decomposition
is fixed by ϕ.

Definition 2.3. Let (V, ϕ) be a locally finite dimensional k[ϕ]-module. An element λ of k
is said to be an eigenvalue if the morphism

ϕ⊗k k− λid : V ⊗k k→ V ⊗k k

has a non-trivial kernel. A non-zero element in that kernel is called an eigenvector.

The bialgebra structure on k[ϕ] induces a symmetric monoidal structure on k[ϕ]-modules.
Explicitly, given (V, ϕ) and (V ′, ϕ′) two k[ϕ]-modules, then their tensor product is simply
given by (V ⊗k V

′, ϕ⊗k ϕ
′).

Proposition 2.4. Let (V, ϕ) and (V ′, ϕ′) be two locally finite dimensional k[ϕ]-modules.
Then their tensor product is locally finite dimensional. Moreover, the eigenvalues of ϕ⊗kϕ

′

are exactly the products of eigenvalues of ϕ and eingenvalues of ϕ′.

Proof. Using Proposition 2.1, it is easy to show that locally finite dimensional k[ϕ]-modules
are stable under tensor products.

If λ is an eigenvalue of ϕ and λ′ is an eigenvalue of ϕ′, then pick x such that ϕ(x) = λx
and y such that ϕ′(y) = λ′y. We have (ϕ⊗ ϕ′)(x⊗ y) = λλ′(x⊗ y).

Conversely, let γ be an eigenvalue of ϕ ⊗ ϕ′. Let x be an eigenvector. We can pick a
finite dimensional subspace of V ⊗ V ′ that contains x and is stable under ϕ⊗ϕ′. Enlarging
this space if necessary, we can further assume that this subspace is of the form U ⊗ U ′

with U ⊂ V stable under ϕ and U ′ ⊂ V ′ stable under ϕ′ and U and U ′ finite dimensional.
We thus have reduced the situation to the finite dimensional case, for which the result is
standard. �

2.2. Tate modules. Recall that q = pk and that ` 6= p is a prime number.

Definition 2.5. Let (V, ϕ) be a locally finite dimensional F`[ϕ]-module. We say that the
pair (V, ϕ) is a q-Tate module if the only eigenvalues of ϕ are powers of q. A q-Tate module
is said to be pure of weight n if the only eigenvalue is qn.

Remark 2.6. The name Tate module comes from the fact that those objects are constructed
from the Tate twists F`(n) defined below. Tate modules in our sense have little to do with
the Tate module of an abelian variety. We hope that this does not lead to any confusion.

In practice, we will drop the mention of q and just say Tate module. Denote by TMod
the category of Tate modules. Morphisms in these categories are given by morphisms of
F`[ϕ]-modules.

Example 2.7. We denote by F`(n) the one-dimensional F`-vector space equipped with the
automorphism ϕ = qnid. Then F`(n) is a Tate module of pure weight n.

Lemma 2.8. The category TMod is an abelian subcategory of ModF`[ϕ]. Moreover, the
tensor product of ModF`[ϕ] restricts to TMod and is exact in both variables.

Proof. Obviously a submodule of a locally finite dimensional F`[ϕ]-module is locally finite
dimensional. If V ⊂ W is an inclusion of locally finite dimensional F`[ϕ]-modules, then
any eigenvalue of V is an eigenvalue of W . It follows that TMod is stable under taking
subobjects. Now consider a short exact sequence of F`[ϕ]-modules

0→ V ′ → V → V ′′ → 0
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Assume that V is locally finite dimensional. Then for an element x of V ′′, we can pick any
lift x in V . By assumption, x lives in a finite dimensional submodule of V . The image of
that submodule in V ′′ is a finite dimensional submodule that contains x. This implies that
V ′′ is locally finite dimensional.

Now assume that V is a Tate module. Let λ ∈ F` be an eigenvalue of V ′′. Let us pick a
subspace U ′′ of V ′′⊗F`

F` that is finite dimensional, stable under the action of ϕ and contains
x. We can then pick a finite dimensional subspace U of V ⊗F`

F` that is finite dimensional,
stable under the action of ϕ and surjects onto U ′′. Let us denote by U ′ the kernel of the
surjection U → U ′′. We thus have a short exact sequence

0→ U ′ → U → U ′′ → 0

of finite dimensional F`[ϕ]-modules. In this finite dimensional situation, it is classical that
all the eigenvalues of U ′′ are eigenvalues of U . In particular λ is a power of q as desired. It
follows that V ′′ must be a Tate module. This concludes the proof that TMod is an abelian
subcategory of ModF`[ϕ].

The fact that TMod is stable under tensor product follows immediatly from Proposition
2.4. Finally, the exactness of the tensor product is already true in ModF`[ϕ]. �

2.3. Deligne splitting. IfA is a symmetric monoidal abelian category, we denote by gr(h)A
the category of Z/hZ-graded objects of A. It is a symmetric monoidal category, with the
tensor product given by

(A⊗B)n :=
∑

a+b≡n (mod h)

Aa ⊗Bb.

The functor U : gr(h)A −→ A obtained by forgetting the degree is symmetric monoidal.
The following Lemma is an analogue of Deligne’s splitting for mixed Hodge structures in

the setting of Tate modules.

Lemma 2.9. The functor Π : TMod −→ ModF`
defined by (V, ϕ) 7→ V admits a factoriza-

tion
TMod

G //

Π

$$

gr(h)ModF`

U

��
ModF`

into symmetric monoidal functors, where G(V, ϕ)n is the space VP associated to the prime
ideal P = 〈ϕ− qn〉.

Proof. A priori U ◦G(V ) is a subspace of Π(V ). We will check that the spaces VP are zero
for P a prime polynomial whose roots are not powers of q. Let P be such a polynomial and
assume that VP 6= 0. Let W ⊂ VP be a non-zero finite dimensional subspace that is stable
under ϕ. Then the minimal polynomial of the restriction of ϕ to W is a power of P . This
means that ϕ has an eigenvalue that is a root of P which is absurd. In conclusion, we see
that U ◦G(V ) ∼= Π(V ).

It remains to check that G is a symmetric monoidal functor. Let (V, ϕ) and (V ′, ϕ′) two
locally finite dimensional F`[ϕ]-modules. Then, we claim that we have an inclusion

(2.1) G(V ⊗ V ′, ϕ⊗ ϕ′)n ⊂
⊕
p+q=n

G(V, ϕ)p ⊗G(V ′, ϕ′)q
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Assuming this is true for the moment, we can sum these inclusions over all choices of n and
we see that they must all be equalities. This shows that G is indeed symmetric monoidal.

It remains to prove that inclusion (2.1) is indeed true. It is straightforward if V and V ′
are finite dimensional. In general, let us pick an element x of G(V ⊗ V ′, ϕ ⊗ ϕ′)n. Then
x lives in a subspace U ⊗ U ′ of V ⊗ V ′ with U ⊂ V and U ′ ⊂ V ′ two finite dimensional
F`[ϕ]-submodules. This reduces the situation to the finite dimensional case. �

2.4. Tate complexes. We will consider more flexible structures than the ones provided by
chain complexes of Tate modules.

Definition 2.10. A Tate complex is a chain complex (C,ϕ) in ModlfdF`[ϕ] whose homology is
a Tate module in each degree.

We denote the category of Tate complexes by TComp. The tensor product of locally
finite dimensional F`[ϕ]-modules induces a symmetric monoidal structure on this category.

We have an obvious symmetric monoidal inclusion

ι : Ch∗(TMod)→ TComp

Theorem 2.11. There exists a symmetric monoidal functor

π : TComp→ Ch∗(TMod)

such that
(1) The composite π ◦ ι is naturally isomorphic to the identity.
(2) The composite ι ◦ π is naturally quasi-isomorphic to the identity.

Proof. For a Tate complex C, we define

π(C∗) =
⊕
P∈W

(C∗)P

whereW is the set of prime polynomials whose roots are powers of q. Clearly, this summand
of C∗ is a subcomplex and is functorial in C∗. It is also not hard to check that π is a symmetric
monoidal functor (this is a variant of the proof of Lemma 2.9). From this description, it is
obvious that π ◦ ι is isomorphic to the identity. On the other hand, for a Tate complex, we
have a splitting of complexes C∗ = π(C∗) ⊕ R. The complex R has only eigenvalues that
are not powers of q. It follows that it is also the case for its homology. Since C∗ is a Tate
complex, this forces R to be acyclic. This concludes the proof. �

3. Functor of étale cochains

In this section, we define the functor of étale cochains from the category SchK of schemes
over K that are separated and of finite type to the category of Tate complexes. The dg-
algebra of étale cochains may be defined in the context of sheaf theory, using the global
sections functor RΓ(Xet,−) where Xet is the étale site of a scheme X. There is a model
for RΓ(Xet,F`) that is an E∞-algebra by construction (see for instance [Pet20], [CC21]
and [Pet22] for a treatment of sheaves of E∞-algebras on topological spaces and [RR15] for
multiplicative sheaves on a site). However, we have made the choice of using an alternative
approach to the étale cochain functor, using the theory of the étale homotopy type of Artin-
Mazur and Friedlander (see [AM69, Fri82]). This construction associates to a scheme a
profinite simplicial set. We can then apply the singular cochain functor and obtain an
E∞-algebra of étale cochains. This detour might seem slightly unnatural to an algebraic
geometer. It is indeed true that all our examples that come from algebraic geometry could
be dealt with using the more classical sheaf-theoretic approach. However, one of our main
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example of applications is the little 2-disks operad (Theorem 5.4). In that case, we are given
an operad in profinite simplicial sets with an action of the Grothendieck-Teichmüller group.
The advantage of the approach that we have chosen in this paper is that this example and
the algebro-geometric example will be treated in a completely parallel fashion.

Recall that a profinite set is a compact Hausdorff totally disconnected topological space.
Alternatively, this is a pro-object in the category of finite sets. We denote by Ŝ the category
of profinite spaces. Its objects are simplicial profinite sets or alternatively pro-objects in
the category of simplicial sets that are degreewise finite and coskeletal [BHH17, Proposition
7.4.1].

Given a profinite set X and a finite commutative ring R, we denote by RX , the ring of
continuous maps X → R where R is given the discrete topology. If X is a profinite space,
we denote by S•(X,F`) the cosimplicial commutative F`-algebra given by FXn

` in degree
n. We also denote by C∗(X,F`) the result of the application of the Dold-Kan equivalence
to S•(X,F`). By the fact that the Dold-Kan construction is lax monoidal, we deduce that
the resulting object is a dg-algebra. Note however, that it is not a commutative dg-algebra
(instead it is naturally an algebra over the Barrat-Eccles operad, see [BF04]).

Given a profinite space X, we denote by H∗(X,F`), the cohomology of C∗(X,F`) which
is naturally a commutative graded algebra over F`.

In this context, we also have a Künneth formula given by the following proposition.

Proposition 3.1. Let X and Y be two profinite spaces. The canonical map

S•(X,F`)⊗ S•(Y,F`)→ S•(X × Y,F`)

is an isomorphism. In particular, there is a Künneth isomorphism

H∗(X,F`)⊗H∗(Y,F`) ∼= H∗(X × Y,F`)

Proof. It suffices to check it in each cosimplicial degree. Thus it is enough to prove that for
X and Y two profinite sets, the canonical map

(FX` )⊗ (FY` )→ FX×Y`

is an isomorphism. Since the tensor product commutes with filtered colimits, we can assume
that X and Y are finite sets in which case the statement is straightforward. �

Definition 3.2. We say that a map X → Y of profinite spaces is an `-complete equivalence
if the induced map H∗(Y,Z/`)→ H∗(X,Z/`) is an isomorphism.

Recall from Quick [Qui11] that there exists a functor Et from schemes over K to profinite
spaces equipped with a continuous action of the absolute Galois group of K. Since K is a
p-adic field with residue field Fq, there is a surjective map

Gal(K/K)→ Gal(Fq/Fq).

The target of this map is isomorphic to Ẑ generated by the Frobenius. We make once and for
all a choice of a lift of the Frobenius in Gal(K/K) and this defines a continuous morphism

Ẑ→ Gal(K/K).

We can restrict the Galois action on Et(X) along this morphism we get a functor

Et : SchK −→ ŜẐ.

This functor has the property that there is an isomorphism

H∗(Et(X),F`) ∼= H∗et(XK ,F`)
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where the Z-action on the left-hand side corresponds to the action of the chosen Frobenius
lift on the right-hand side.

Proposition 3.3. Let X and Y be two K-schemes of finite type. The canonical map

Et(X × Y )→ Et(X)× Et(Y )

is an `-complete equivalence.

Proof. In light of Proposition 3.1 and of the identification in the paragraph just above, we
have to prove that the canonical map

H∗et(XK ,F`)⊗H
∗
et(YK ,F`)→ H∗et((X × Y )K ,F`)

is an isomorphism. This is just the Künneth theorem for étale cohomology [Del77, Cor.
1.11]. �

Construction 3.4. We define the functor C∗et(−,F`) on finite type schemes over K as the
following composition

SchK
Et−−→ ŜZ C∗(−,F`)−−−−−−→ (Ch∗(ModlfdF`[ϕ]))

op

This lands in Ch∗(ModlfdF`[ϕ]) and not merely in Ch∗(ModF`[ϕ]) because of Proposition 2.1
and the observation that for a profinite set X, the vector space FX` is a filtered colimit of
finite dimensional vector spaces.

Proposition 3.5. This functor is oplax monoidal and the natural transformation

C∗et(X,F`)⊗ C∗et(Y,F`)→ C∗et(X × Y,F`)

is a quasi-isomorphism.

Proof. The first claim follows by observing that this functor is obtained by composing two
oplax monoidal functors. The second claim follows by combining Proposition 3.3 and Propo-
sition 3.1. �

Construction 3.6. This proposition implies that the functor C∗et(−,F`) descends to a
symmetric monoidal ∞-functor

N(SchK)op −→ Ch∗(ModlfdF`[ϕ])

that we still denote by C∗et(−,F`).

We will need to compare the étale chains and cochains to singular chains and cochains.
For X a scheme over K, we denote by Xan the complex analytic space underlying XC (recall
that K comes with a preferred embedding into C).

Proposition 3.7. There is an equivalence

C∗((−)an,F`) ' C∗et(−,F`)

in the category of symmetric monoidal ∞-functors from N(SchK) to Ch∗(F`).

Proof. We construct a zig-zag of symmetric monoidal natural transformation of functors
from schemes over K to cochain complexes connecting C∗sing((−)an,F`) and C∗et(−,F`). The
middle term in this zig-zag is the functor C∗et((−)C,F`). There is a map

C∗et(XC,F`)→ C∗sing(Xan,F`).
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This is the comparison between étale and singular cohomology which is a quasi-isomorphism
for any schemeX (see [GAV73, XVI, Theorem 4.1] or [Fri82, Theorem 8.4] for étale homotopy
types). There is also a base change map

C∗et(XC,F`)→ C∗et(XK ,F`) = C∗et(X,F`)
which is also a quasi-isomorphism for any scheme X (see [GAV73, XII, Corollary 5.4] for a
proof in the proper case, see [Mil80, p. 231, Corollary 4.3] for the general case). �

4. Formality criteria for symmetric monoidal functors

Let A be a symmetric monoidal abelian category whose tensor product is exact in both
variables. In this section, we give a formality criterion for symmetric monoidal functors of
chain complexes of objects of A equipped with an extra grading.

Definition 4.1. Let N be an integer. A morphism of chain complexes f : A→ B ∈ Ch∗(A)
is calledN -quasi-isomorphism if the induced morphism in homologyHi(f) : Hi(A)→ Hi(B)
is an isomorphism for all i ≤ N .

Definition 4.2. Let C be a symmetric monoidal category and F : C −→ Ch∗(A) a lax
symmetric monoidal functor. Then F is said to be a formal (resp. N -formal) lax symmetric
monoidal functor if there is a string of monoidal natural transformations of lax symmetric
monoidal functors

F
Φ1⇐= F1 =⇒ · · · ⇐= Fn

Φn=⇒ H∗ ◦ F
such that for every object X of C, the morphisms Φi(X) are quasi-isomorphisms (resp.
N -quasi-isomorphisms).

Definition 4.3. Let C be a symmetric monoidal category and F : N(C) → Ch∗(A) a lax
symmetric monoidal functor (in the ∞-categorical sense). We say that F is a formal (resp.
N -formal) lax symmetric monoidal ∞-functor if F and H∗ ◦ F are quasi-isomorphic (resp.
N -quasi-isomorphic) as lax monoidal functors from N(C) to Ch∗(A).

Remark 4.4. Denote by t≤N : Ch≥0(A) −→ Ch≥0(A) the truncation functor defined by

(t≤NA)n :=

 An if n < N
AN/ Im(dN+1) if n = N
0 if n > N

.

This functor can be checked to be lax monoidal. Since it preserves quasi-isomorphisms, it de-
scends to a lax monoidal∞-functor Ch≥0(A)→ Ch≥0(A). Moreover, for any lax monoidal
functor F : C → Ch≥0(A) the canonical map F → t≤NF is an N -quasi-isomorphism of
lax monoidal functors. Likewise in the ∞-categorical case, given F : N(C) → Ch≥0(A) a
lax monoidal ∞-functor, the canonical map F → t≤NF is an N -quasi-iomorphism of lax
monoidal ∞-functors. From this observation, we deduce that, in both cases, F is N -formal
if and only if t≤NF is formal.

Remark 4.5. The previous remark fails if we use the cohomological grading. In that case,
we can define N -formality of an algebraic structure in cochain complexes as being a zig-zag
of maps that induce isomorphisms in cohomology up to degree N . However, this notion
cannot be interpreted as usual formality of the truncation since in the cohomological case,
the truncation will not be lax monoidal (it is in fact oplax monoidal).

A formal functor immediatly yields formality results for operads by the following Propo-
sition.

Proposition 4.6. Let C be a symmetric monoidal category and P be an operad in sets.
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(1) Let F : C −→ Ch≥0(A) be a formal (resp. N -formal) lax symmetric monoidal
functor. Then for any P -algebra X in C, the dg-P -algebra F (X) is formal (resp.
N -formal) in C.

(2) Let F : N(C) −→ Ch≥0(A) be a formal (resp. N -formal) lax symmetric monoidal
functor. Then for any P -algebra X in C, we have an equivalence F (X) ' H(F (X))
(resp. t≤NF (X) ' t≤NH(F (X)) in the ∞-category AlgP (Ch∗(k)).

Proof. This is immediate. See for instance [GNPR05, Proposition 2.5.5]. �

Remark 4.7. Formality in the ∞-categorical sense is in general weaker than formality
in the model categorical sense. Our paper gives a method for proving formality in the
∞-categorical sense. When the model structure on AlgP (Ch∗(k)) happens to model the
∞-category AlgP (Ch∗(k)), this implies formality in the model categorical sense. But in
the other cases, the model category AlgP (Ch∗(k)) does not model the correct homotopy
theory so the question of having formality is not particularly interesting. In any case, we
have the following rigidification result due to Hinich that gives conditions on P under which
the two notions are equivalent.

Proposition 4.8. Let k be a field. Let P be an operad in sets that is admissible and Σ-
cofibrant. Let A be a P -algebra in Ch∗(k). If A is formal in AlgP (Ch∗(k)) (resp. N -formal
in AlgP (Ch≥0(k))), then A is formal in AlgP (Ch∗(k)) (resp. N -formal in AlgP (Ch≥0(k))).

Proof. Under those assumptions Hinich shows in [Hin15] that the ∞-category underly-
ing the model structure on AlgP (Ch∗(k)) for any field is equivalent to the ∞-category
AlgP (Ch∗(k)). This immediately yields the result. The statement about N -formality fol-
lows from Remark 4.4. �

For the rest of this section we fix a positive integer h and a positive rational number α
with α < h.

Definition 4.9. Denote by Ch∗(gr
(h)A)α-pure the full subcategory of Ch∗(gr

(h)A) given by
those Z/h-graded complexes A =

⊕
Apn with α-pure homology :

Hn(A)p = 0 for all p 6≡ αn (mod h).

Proposition 4.10. Let N = b(h− 1)/αc. The functor

U : Ch≥0(gr(h)A)α-pure −→ Ch≥0(A)

defined by forgetting the degree is N -formal as a lax symmetric monoidal functor.

Proof. We adapt the proof of [CH20, Proposition 2.7], to the Z/h-graded setting.
Consider the truncation functor τ : Ch≥0(gr(h)A) −→ Ch≥0(gr(h)A) defined by sending

a Z/h-graded chain complex A =
⊕
Apn, to the graded complex given by:

(τA)pn :=

 Apn n > dp/αe
Ker(d : Apn → Apn−1) n = dp/αe
0 n < dp/αe

for every n ∈ Z≥0 and every 0 ≤ p < h. Note that for each p, τ(A)p∗ is the chain complex
given by the canonical truncation of Ap∗ at dp/αe, which satisfies

Hn(τ(A)p∗)
∼= Hn(Ap∗) for all n ≥ dp/αe.

Using the inequalities of the ceiling function dxe+ dye − 1 ≤ dx+ ye ≤ dxe+ dye one easily
verifies that τ is lax symmetric monoidal (see the proof of [CH20, Proposition 2.7]).

Consider the lax monoidal functor

t≤NH∗ : Ch≥0(gr(h)A) −→ Ch≥0(gr(h)A)
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given by the N -truncated homology

t≤NHn(A)p :=

{
Hn(A)p if n ≤ N
0 if n > N

.

Define a morphism Ψ(A) : τA −→ t≤NH∗(A) by letting Ker(d) � t≤NHn(A)p if n =
dp/αe and Apn → 0 if n 6= dp/αe. We next show that this defines a monoidal natural
transformation Ψ : τ ⇒ t≤NH∗. It suffices to check that given A,B ∈ Ch≥0(gr(h)A)α-pure,
the diagram

τA⊗ τB

µ

��

Ψ(A)⊗Ψ(B) // t≤NH∗(A)⊗ t≤NH∗(B)

µ

��
τ(A⊗B)

Ψ(A⊗B) // t≤NH∗(A⊗B)

commutes. The only non-trivial verification is for elements a ∈ (τA)np and b ∈ (τB)n
′

p′ with
n = dp/αe and n′ = dp′/αe. Note that we have

n+ n′ = dp/αe+ dp′/αe ≥ d(p+ p′)/αe.

We have the following three cases:
(1) If p+ p′ < h and n+ n′ = d(p+ p′)/αe then Ψ(a⊗ b) = [a⊗ b] ∈ t≤NHn+n′(A⊗B)

and the diagram commutes.
(2) If p + p′ < h and n + n′ > d(p + p′)/αe then Ψ(a ⊗ b) = 0. By α-purity we have

Hn+n′(A⊗B)p+p
′

= 0, and the diagram trivially commutes.
(3) If p+ p′ ≥ h then Ψ(a⊗ b) = 0. Note that we have

n+ n′ ≥ d(p+ p′)/αe ≥ p+ p′

α
>
h− 1

α
≥ N.

Therefore t≤NHn+n′(A⊗B) = 0 and the diagram trivially commutes.
The inclusion τA ↪→ A defines a monoidal natural transformation Φ : U ⇒ 1. Also, there

is an obvious monoidal natural transformation Υ : H∗ ⇒ t≤NH∗ defined by projection. All
together, gives monoidal natural transformations

U
Φ⇐= U ◦ τ Ψ

=⇒ U ◦ t≤NH∗ = t≤NH∗ ◦ U
Υ⇐= H∗ ◦ U.

It only remains to note that, if A has α-pure homology, then the morphism Φ(A) is a
quasi-isomorphism and the morphisms Ψ(A) and Υ(A) are N -quasi-isomorphisms. �

Remark 4.11. The proof of the above proposition fails in the cohomological case. The
main issue is that the functor τ is not lax symmetric monoidal in the Z/h-graded situation.
We will provide an alternative statement for cohomological dg-algebras in Section 6, using
the theory of free models.

5. Main results in the homologically graded case

In this section, we use étale chains, together with the formality criterion of Section 4,
to prove our main results of formality in their chain version. Let α be a positive rational
number with α < h, where we recall that h denotes the order of q in F×` .

Our main result is the following.

Theorem 5.1. Let Schα-pure
K be the category of schemes X over K with the property that

Hn
et(XK ,F`) is a pure Tate module of weight αn, for all n. Then the functor

N(Schα-pure
K ) −→ Ch∗(F`)
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given by X 7→ C∗(Xan,F`) is N -formal as a lax symmetric monoidal ∞-functor, with N =
b(h− 1)/αc.

Proof. We consider the following composition of functors

N(Schα-pure
K )

C∗et−−→ TCompop '−→ Ch∗(TMod)op G−→ Ch∗(gr
(h)ModF`

)op

The first functor is the one constructed in 3.6, it does land in TComp because of the
restriction on the schemes that we consider. The second functor is the equivalence con-
structed in Theorem 2.11 and the functor G is defined in Lemma 2.9. This composition
is a symmetric monoidal ∞-functor. We can compose this functor with the duality func-
tor Ch∗(gr

(h)ModF`
)op → Ch∗(gr

(h)ModF`
) which is also a symmetric monoidal∞-functor

when restricted to chain complexes with finite dimensional cohomology (by [Del77, Corollary
1.10] the étale cohomology of a finite type scheme is indeed finite dimensional). We end up
with a symmetric monoidal ∞-functor

N(Schα-pure
K ) −→ Ch≥0(gr(h)ModF`

)α-pure.

We can further compose this with the forgetful functor

Ch≥0(gr(h)ModF`
)α-pure −→ Ch≥0(F`)

which is N -formal by Proposition 4.10. We end up with an N -formal symmetric monoidal
∞-functor

N(Schα-pure
K ) −→ Ch≥0(F`).

This functor is equivalent to the functor X 7→ C∗et(X,F`)∨ (where (−)∨ denotes the dual
vector space). By the comparison between étale and singular cohomology (Proposition 3.7),
we have an equivalence of symmetric monoidal ∞-functors

C∗et(X,F`)∨ ' C∗(Xan,F`)∨.
Finally, we have an equivalence of symmetric monoidal ∞-functors

C∗(Xan,F`) ' C∗(Xan,F`)∨

since Xan has finite dimensional singular cohomology. �

As an immediate corollary of the above theorem and of Proposition 4.8 we get the fol-
lowing theorem.

Theorem 5.2. Let P be an operad in sets and let X be a P -algebra in SchK . Let N =
b(h − 1)/αc. Assume that for each color c of P , the cohomology Hn

et(X(c)K ,F`) is a pure
Tate module of weight αn, for all n. Then:

(1) There is an N -equivalence C∗(Xan,F`) ' H∗(Xan,F`) in the ∞-category of P -
algebras in Ch∗(F`).

(2) If P is admissible and Σ-cofibrant, then C∗(Xan,F`) is N -formal as a dg-P -algebra.

Let us now review some applications of Theorem 5.2. Consider the cyclic operadM0,•.
As mentioned before, this operad lives in the category of smooth and proper schemes over
Z. We have:

Theorem 5.3. The cyclic dg-operad C∗((M0,•)an,F`) is 2(`− 2)-formal.

Proof. It suffices to prove that for all n, the degree n étale cohomology ofM0,• with coef-
ficients in F` is a Tate module that is pure of weight n

2 . We call a scheme 1
2 -pure if it has

this property.
We first make the following claims:
(i) Schemes that are 1

2 -pure are stable under finite products.
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(ii) If Z → X is a closed embedding of smooth schemes and Z and X are 1
2 -pure, then

the blow-up BZ(X) is 1
2 -pure.

The first property is an immediate consequence of the Künneth formula in étale coho-
mology. The second property follows from the blow-up formula which gives an equivariant
isomorphism

H∗et(BZ(X),F`) ∼= H∗et(X,F`)⊕

(
c−1⊕
i=0

H∗et(Z,F`)[2i]⊗F`
F`(i)

)
,

where c is the dimension of Z.
Now, we can prove that the scheme M0,n is 1

2 -pure by induction on n. For n = 3, this
moduli space is a point. For n = 4, we have M0,4

∼= P1 and the proposition is a classical
computation. Assume that the proposition has been proved for {3, 4, . . . , n}. We may use
Keel’s inductive description ofM0,n+1 as a sequence of blow-ups starting fromM0,n×M0,4

and in which at each stage, the variety that is blown-up is isomorphic toM0,p+1 ×M0,q+1

with p + q = n (see [Kee92, Section 1]). We conclude by the induction hypothesis and the
first claim of the proof. �

We also have a statement for the little disks operad D. This does not quite fit our theorem
since this is not an operad in the category of schemes. Nevertheless, one can construct a
model of C∗(D,F`) equipped with an action of the Grothendieck-Teichmüller group ĜT ,
which promotes C∗(D,F`) to an operad in the category of Tate complexes.

Theorem 5.4. The dg-operad C∗(D,F`) is (`− 2)-formal.

Proof. There is an action of ĜT on an operad BP̂AB constructed by Drinfeld in [Dri90]
(see also [Hor17, Section 7] for more details). This is an operad in the category of simplicial
profinite sets. We can apply S•(−,F`) to this object (this construction is defined in Section
3) and we get a cosimplicial cooperad with an action of ĜT that we can then dualize to
get an operad in simplicial F`-vector spaces equipped with an action of ĜT . Finally we can
apply the Dold-Kan construction to this operad to end up with a dg-operad. We claim that
the resulting operad is quasi-isomorphic to C∗(D,F`). The exact same statement for the
framed little disks operad is proved in [BdBHR19, Theorem 9.1]. The group ĜT comes with
a surjective map

χ` : ĜT → Z×`
that factors the cyclotomic character of the absolute Galois group of Q (see Section 3.1 of
[Sch97]). Moreover, the action of an element ϕ ∈ ĜT on Hk(D(2),F`) is trivial in degree
zero and given by χ`(ϕ)id in degree 1. This can be proved by using the explicit action
of ĜT on BP̂AB(2) ∼= BẐ where Ẑ denotes the profinite completion of the group Z. As
an operad, H∗(D,F`) is generated by operations of arity 2. Therefore, we can deduce that
the action of ϕ on Hn(D(∗),F`) is given by multiplication by χ`(ϕ)n (Petersen uses the
analogous argument in the rational case in [Pet14]). In particular, let p be a prime number
such that p generates F×` and let ϕ be an element of ĜT such that χ`(ϕ) = p (such ϕ exists
by surjectivity of χ`). Then from the previous discussion the pair (C∗(D,F`), ϕ) is an operad
in the category of Tate complexes that is pure of weight 1. �

Let us denote by D≤n the truncation of the little disks operad in arity less than or equal
to n (that is we only keep the composition maps that only involve those arities). Then
C∗(D≤n,F`) is an n-truncated dg-operad.

Corollary 5.5. The (`− 1)-truncated operad C∗(D≤(`−1),F`) is formal.
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Proof. By the previous theorem, we deduce that C∗(D≤(`−1),F`) is (` − 2) formal. On the
other hand the homology of D(n) is concentrated in degrees less than or equal to n − 1.
Therefore, the `− 2-truncation map

C∗(D≤`−1,F`)→ t≤`−2C∗(D≤`−1,F`)

is a quasi-isomorphism. �

Remark 5.6. This corollary is in some sense optimal. Indeed C∗(D≤`,F`) is not formal. If
it were the case, it would imply that there is a Σ`-equivariant quasi-isomorphism.

C∗(D(`),F`) ' H∗(D(`),F`)

This would mean that the homotopy orbit spectral sequence

H∗(Σ`, H∗(D(`),F`)) =⇒ H∗(D(`)hΣ`
,F`)

collapses at the E2-page. However, this is not the case. Indeed the E2-page has non-trivial
homology in arbitrarily high degree. On the other hand, the space D(`)hΣ`

has the homotopy
type of the space of unordered configurations of ` points in the plane which is a manifold
and in particular has bounded above homology.

Remark 5.7. Formality of the operad of little disks with torsion coefficients is generalized
to higher dimensional little disks operads in the work [BdBH21] of the second author with
Pedro Boavida de Brito. The strategy of proof is exactly the same: we construct a Frobenius
automorphism on the singular chains over the little n-disks operad in such a way that the
resulting operad in Tate complexes is pure.

We have a similar theorem for the framed little disks operad FD.

Theorem 5.8. The dg-operad C∗(FD,F`) is (`− 2)-formal.

Proof. The proof is entirely analogous once we have an action of ĜT on the framed little
disks operad. This is constructed in [BdBHR19, Theorem 8.4] and the effect of this action
on homology is explained in [BdBHR19, Theorem 9.1]. �

6. Weight decompositions and formality of cohomological dg-algebras

We next give a criterion of formality for dg-algebras over an arbitrary field k equipped with
a Z/hZ-graded weight decomposition. In this section and the following we use cohomological
instead of homological grading.

Fix a positive integer h and a positive rational number α with α < h.

Definition 6.1. Let A be a non-negatively graded dg-algebra over k. A gr(h)-weight de-
composition of A is a direct sum decomposition

An =

h−1⊕
p=0

Anp

of each vector space An, such that:
(1) dAnp ⊆ An+1

p for all n ≥ 0 and all 0 ≤ p ≤ h− 1.
(2) Anp ·An

′

p′ −→ An+n′

p+p′ (mod h) for all n, n′ ≥ 0 and all 0 ≤ p, p′ ≤ h− 1.

Given x ∈ Anp we will denote by |x| = n its degree and by w(x) = p its weight.

Denote by gr(h)DGAk the category of dg-algebras with gr(h)-weight decompositions. Note
that these are just monoids in Ch≥0(gr(h)k).
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Definition 6.2. The cohomology of a dg-algebra A ∈ gr(h)DGAk is said to be α-pure if

Hn(A)p = 0 for all p 6≡ αn (mod h).

Denote by gr(h)DGAα-pure
k the category of dg-algebras with α-pure cohomology.

6.1. Massey products. We first prove some general vanishing results of Massey products in
cohomology. Let A be a dg-algebra and x1, · · · , xk ∈ H∗(A) cohomology classes, with k ≥ 3.
A defining system for {x1, x2, · · · , xk} is a collection of elements {xi,j}, for 1 ≤ i ≤ j ≤ k
with (i, j) 6= (1, k) where xi = [xi,i] and

d(xi,j) =

j−1∑
q=i

(−1)|xi,q|xi,qxq+1,j .

Consider the cocycle

γ(xi,j) :=

k−1∑
q=1

(−1)|x1,q|x1,qxq+1,k.

The k-tuple Massey product 〈x1, · · · , xk〉 is defined to be the set of all cohomology classes
[γ(xi,j)], for all possible defining systems. A Massey product is said to be trivial if the trivial
cohomology class belongs to its defining set.

Remark 6.3. Note that the triple Massey product 〈x1, x2, x3〉 is empty unless x1x2 = 0
and x2x3 = 0. For k > 3 one similarly asks that some q-tuple Massey products, with q < k,
are trivial in a certain compatible way, so that at least one defining system exists.

Remark 6.4. Given any dg-algebra defined over a field, there is a transferred structure
of A∞-algebra on its cohomology H∗(A), which is unique up to A∞-isomorphism. The
higher operations µk of this A∞-structure give elements in the corresponding Massey sets.
Conversely, given x ∈ 〈x1, · · · , xk〉 there is always an A∞-structure on H∗(A) such that
µk(x1, · · · , xk) = ±x [BMFM20].

By obvious degree-weight reasons, the condition of α-purity has direct consequences on
the vanishing of Massey products. We have:

Proposition 6.5. Let A ∈ gr(h)DGAα-pure
k and k ≥ 3 an integer. If α(k−2)

h /∈ Z, then all
k-tuple Massey products in H∗(A) are trivial.

Proof. Assume that xi ∈ Hni(A)wi , for i = 1, · · · , k, so that w(xi) = wi and |xi| = ni. We
will show that 〈x1, · · · , xk〉 is trivial. Given a defining system {xi,j} we have

|xij | =
j∑
q=i

ni + i− j and w(xij) =

j∑
q=i

wi.

Let n :=
∑k
i=1 ni and w :=

∑k
i=1 wi. The above expression for γ(xi,j) gives

|γ(xi,j)| = n− k + 2 and w(γ(xi,j)) = w.

Therefore the k-tuple Massey product 〈x1, · · · , xk〉 lives in Hn−k+2(A)w. Now, α-purity
tells us that wi ≡ αni (mod h) and hence Hn−k+2(A)w is non-trivial only when w ≡ α(n−
k + 2) (mod h). This gives the condition α(k − 2) ≡ 0 (mod h). �

For simply connected dg-algebras, the above proposition tells us that all higher Massey
products living in sufficiently low-degree cohomology will be trivial, regardless of their length.
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Definition 6.6. A dg-algebra A is said to be cohomologically connected if the unit map
induces an isomorphism H0(A) ∼= k. It is simply connected if, in addition, H1(A) = 0. Let
r ≥ 1. Then A is called r-connected if, in addition, Hi(A) = 0 for all 1 ≤ i ≤ r.

Proposition 6.7. Let A ∈ gr(h)DGAα-pure
k be simply connected. Then H≤N (A) has no

non-trivial Massey products, where N = d hαe + 3. More generally, if A is r-connected with
r > 0 then H≤Nr (A) has no non-trivial Massey products, where Nr = dhrα e+ 2r + 1.

Proof. If Hi(A) = 0 for all 0 < i ≤ r, then a k-tuple Massey product will have degree at
least rk + 2. The condition rk + 2 ≤ dhrα e+ 2r + 1 gives α(k − 2) < h. �

6.2. Formality of dg-algebras. We now prove partial formality results for dg-algebras
with pure weight decompositions in cohomology.

Definition 6.8. Let N ≥ 0 be an integer. A dg-algebra A is said to be N -formal if there is a
string of N -quasi-isomorphisms of dg-algebras from A to its cohomology H∗(A), considered
as a dg-algebra with trivial differential.

As mentioned in Remark 4.11, a main issue in the setting of Z/h-graded dg-algebras is
that the functor τ used in the proof of Proposition 4.10 is not lax monoidal. To circumvent
this, given a Z/h-graded dg-algebra with α-pure cohomology we will take a free model which
is actually Z-graded. With this new weight-grading we will get α-purity only up to degree
N ≤ (h− 1)/α, which leads to formality up to this degree.

Proposition 6.9. Every cohomologically connected dg-algebra in gr(h)DGAα-pure
k is N -

formal, with N = b(h− 1)/αc.

Proof. Given A ∈ gr(h)DGAα-pure
k , we will adapt the theory of free models for dg-algebras

over an arbitrary field ([HL88]) to build a free dg-algebraM = T (V ) with a Z-graded weight
decomposition

M =
⊕
p≥0

Mp with dMp ⊆Mp and Mp ·Mq ⊆Mp+q

such that Mn
p = 0 for all p < αn, together with an N -quasi-isomorphism f : M → A of

dg-algebras satisfying f(Mp) ⊆ Ap (mod h).
Assume for now that we have defined such a model M . Then, up to degree N , it has

α-pure cohomology. Moreover, since Mn
p = 0 for all p < αn, we have dMn

αn = 0. Then,
we construct a map M → H∗(M) whose restriction to Mn

αn is the canonical surjection
Mn
αn � Hn(M)αn for all n and which maps everything else to zero. This is a map of

dg-algebras which is an N -quasi-isomorphism. This gives formality up to degree N .
Let us build M . For all 0 ≤ n ≤ N , let Cnp := Hn(A)p and consider C =

⊕
Cnp as

a bigraded vector space. Consider the free bigraded algebra M(0) := T (C) with trivial
differential and define a map f0 : M(0)→ A by taking a section of the projection Zn(A)p →
Cnp . Since A is α-pure and n ≤ N , we have that M(0)k is pure of weight αk, for all k ≥ 0.
Also, Hn(f0) is surjective for all n ≤ N and H1(f0) is a monomorphism. Assume inductively
that we have defined a dg-algebra M(n − 1) with a Z-graded weight decomposition and a
map fn−1 : M(n− 1)→ A such that fn−1(M(n− 1)p) ⊆ Ap (mod h), satisfying:

(1) The dg-algebra M(n − 1) is the colimit of a countable number of free bigraded
extensions of degree n− 1 and weights ≥ αn, starting from M(n− 2).

(2) The map Hi(fn−1) is surjective for all i ≤ N and a monomorphism for all i ≤ n.
Note that M(n− 1)n+1

p = 0 for all p < α(n+ 1), so to make fn−1 into a monomorphism in
degree n+1 it suffices to kill the kernel of Hn+1(fn−1) when restricted to weights ≥ α(n+1).
We start with the lowest of such weights. Denote by g : M(n− 1)α(n+1) → Aα(n+1) (mod h)
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the restriction of fn−1 to pure weight α(n+ 1) and consider K := KerHn+1(g) = Hn(C(g))
as a bigraded vector space of pure weight α(n + 1) and homogeneous degree n. To define
a differential K → M(n − 1)n+1

α(n+1) and a map K → Anα(n+1) (mod h) take a section of the
projection

Hn(C(g)) � Zn(C(g)) ⊂M(n− 1)n+1
α(n+1) ⊕A

n
α(n+1) (mod h).

These define a differential on M ′(0) := M(n − 1) t T (K) and a map f ′0 : M ′(0) → A
extending fn−1. By standard arguments in the theory of free models, the map Hn+1(f ′0)
is a monomorphism when restricted to weights ≤ α(n+ 1). We may iterate this process to
obtain f ′i : M(i)→ A as a free extension of M ′(i− 1) of degree n and weight α(n+ 1) + i,
such that Hn+1(f ′0) is a monomorphism when restricted to weights ≤ α(n+ 1) + i. We then
let M(n) :=

⋃
iM
′(i) and fn :=

⋃
f ′i : M(n)→ A. This ends the inductive step. For n = N

we get the desired model. �

7. Main results in the cohomologically graded case

Recall that objects in the category of Tate complexes TComp are chain complexes over
F` enriched with automorphisms ϕ giving Tate modules in cohomology. We will show that
every monoid in TComp is quasi-isomorphic to a dg-algebra in gr(h)DGAF`

, where h denotes
the order of q in F×` . As a consequence, the formality criterion of Proposition 6.9 applies to
étale cochains.

Proposition 7.1. Let A be a cohomologically connected monoid in TComp. Then there is
a dg-algebra M in gr(h)DGAF`

together with a quasi-isomorphism M → A of dg-algebras,
such that Hn(M)k corresponds to the generalized eigenspace of (Hn(A), ϕ) of eigenvalue qk.

Proof. Using Theorem 2.11, we can simply take M to be the subalgebra ιπ(A) �

Let α be a positive rational number, with α < h. Our main theorem for cohomological
dg-algebras is the following:

Theorem 7.2. Let X ∈ SchK be a scheme over K. Assume that for all n, Hn
et(XK ,F`) is

a pure Tate module of weight αn. Then the following is satisfied:
(i) If α(k − 2)/h /∈ Z then all k-tuple Massey products are trivial in H∗(Xan,F`).
(ii) If Hi(Xan,F`) = 0 for all 0 < i ≤ r then Hn(Xan,F`) contains no non-trivial

Massey products for all n ≤ dhrα + 2r + 1e.
(iii) The dg-algebra then C∗sing(Xan,F`) is N -formal, with N = b(h− 1)/αc.

Proof. By assumption, the dg-algebra C∗sing(Xan,F`) is quasi-isomorphic to a monoid in
Tate complexes (C∗et(X,F`), ϕ) with α-pure cohomology. Therefore by Proposition 7.1, it is
quasi-isomorphic to a dg-algebra in gr(h)DGAα-pure

F`
. It now suffices to apply Propositions

6.9, 6.5, 6.7 respectively for each of the implications (i), (ii) and (iii). �

We have the following direct application of the previous theorem.

Corollary 7.3. Let X be a smooth and proper scheme over OK , the ring of integers of K.
Assume that the only eigenvalues of the Frobenius action on H∗et(XK ,F`) are powers of q.
Then:

(i) If (k − 2)/2h /∈ Z then all k-tuple Massey products are trivial in H∗(Xan,F`).
(ii) If Hi(Xan,F`) = 0 for all 0 < i ≤ r then Hn(Xan,F`) contains no non-trivial

Massey products for all n ≤ 2hr + 2r + 1.
(iii) The dg-algebra C∗sing(Xan,F`) is 2(h− 1)-formal.

Proof. The conditions of the theorem are satisfied with α = 1/2. �
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Example 7.4. We can apply this corollary to Pn. This is a smooth and proper scheme over
Z. We can therefore base change it to Zp with p a prime number that generates F×` and we
deduce that C∗sing(Pnan,F`) is 2(` − 2)-formal. Note that in fact, complex projective spaces
are formal over the integers (see [BB20]).

As illustrated by this example, it often happens that the scheme of interest has a smooth
and proper model X over a commutative ring R that is finitely generated over Z. In that
case there are infinitely many ways to base change X to a ring of the form OK (one for each
maximal ideal of R). Those different ways give rise to different values for the parameter h
and one should pick the option that yields the largest possible value for h.

Denote by Fm(Ad) the scheme of configurations of m points in Ad. This is informally
described at the point set level as follows

Fm(Ad) = {(x1, . . . , xm) ∈ (Ad)m|xi 6= xj , 1 ≤ i < j ≤ m}

The configuration spaces Fm(Rd) are known to be formal over Q for any m and d. How-
ever, the question of formality over F` is open as explained in [Sal20]. Using our machinery
we deduce some results of formality over F` for configuration spaces Fm(Cd). We will in fact
consider the more general problem of the formality of a complement of subspace arrange-
ments.

Definition 7.5. Let V be a d-dimensional K-vector space. We say that a finite family
{Wi}i∈I subspaces of V is a good arrangement of codimension c subspaces if each Wi is of
codimension c in V and for each subset J ⊂ I, the codimension of the intersection

⋂
j∈JWj

is a multiple of c.

Remark 7.6. It is easy to check that this definition implies the following properties.
(1) The empty arrangement is good.
(2) If {Wi}i∈I is a good arrangement of codimension c subspaces of V , then, for each

J ⊂ I, the family {Wj}j∈J is a good arrangement of codimension c subspaces of V .
(3) If {Wi}i∈I is a good arrangement of codimension c subspaces of V , then for each

i ∈ I, the family {Wj ∩ Wi}j 6=i is either a good arrangement of codimension c
subspaces of Wi or one of the spaces Wj ∩Wi is equal to Wi.

Remark 7.7. In [CH20, Definition 8.2] we gave an inductive definition of good arrangements
which was slightly imprecise. We believe that Definition 7.5 is more natural and clearer.
Under this definition we redo the proof of [CH20, Proposition 8.6] in the context of Galois
actions in Lemma 7.11 below.

Example 7.8. Any hyperplane arrangement is a good arrangement of codimension 1-
subspaces.

Example 7.9. Recall that a set of subspaces of codimension c in a d-dimensional vector
space is said to be in general position if the intersection of n of those subspaces is of codi-
mension min(d, cn). One easily checks that, if d is a multiple of c, a set of codimensions
c subspaces in general position is a good arrangement. Let us mention that there is small
mistake in [CH20, Example 8.4] where we forgot to include the condition that the dimension
of the ambient space is a multiple of c. Without this hypothesis [CH20, Proposition 8.6]
does not hold as can be seen by considering the complement of 2 distinct lines in C3.

Example 7.10. Take V = (Kd)m and define, for (i, j) an unordered pair of distinct elements
in {1, . . . ,m}, the subspace

W(i,j) = {(x1, . . . , xm) ∈ (Kd)m, xi = xj}.
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This collection of codimension d subspaces of V is a good arrangement. The complement
V −

⋃
(i,j)W(i,j) is exactly Fm(Ad), the ordered configuration space of m distinct points

in Ad. Let us observe that these subspaces are not in general position if m is at least 3.
Indeed, the codimension of W(1,2) ∩W(1,3) ∩W(2,3) is 2d. This example shows that good
arrangements are more general than arrangements in general position.

Lemma 7.11 (c.f. [BE97]). Let V be a d-dimensional vector space over K and {Wi}i∈I
be a finite collection of subspaces that form a good arrangement of codimension c subspaces.
Then Hn

et(V −
⋃
iWi,F`) is pure of weight cn/(2c− 1).

Proof. We proceed by induction on the cardinality of I. When I is empty there is nothing
to prove. Assume that the lemma has been proven for |I| < n. Let j be an element of
I. Let X = V −

⋃
i6=jWi, let U = V −

⋃
iWi, then U is an open subscheme of X whose

complement is Z = Wj −
⋃
i 6=jWi ∩Wj . By remark 7.7, the scheme X is a complement of

good arrangements of |I| − 1 codimension c subspaces and the scheme Z is either empty or
a complement of good arrangements of |I| − 1 codimension c subspaces. We have a Gysin
long exact sequence

. . .→ Hn−2c
et (Z,F`)(−c)→ Hn

et(X,F`)→ Hn
et(U,F`)→ Hn+1−2c

et (Z,F`)(−c)→ . . .

By the induction hypothesis, bothHn
et(X,F`) andH

n+1−2c
et (Z,F`)(−c) are of weight cn/(2c−

1), thus Hn
et(U,F`) is also of weight 2cn/(2c− 1) as desired. �

Theorem 7.12. Let X be a complement of a good arrangement of codimension c subspaces
defined over K. Then:

(i) If (2c−1)(k−2)/hc /∈ Z then all k-tuple Massey products are trivial in H∗(Xan,F`).
(ii) The space Hn(Xan,F`) contains no non-trivial Massey products for

n ≤
⌈
h(2c− 1)(2c− 2)

c
+ 4c− 3

⌉
(iii) The dg-algebra C∗sing(Xan,F`) is N -formal, with N = b(h− 1)(2c− 1)/cc.

Proof. By Lemma 7.11 we know that codimension c subspace arrangements satisfy the con-
ditions of Theorem 7.2. For part (ii), one shows by induction on the number of subspaces
that the cohomology of X vanishes in degree ≤ 2c− 2. �

Remark 7.13. By (i) of the above Theorem we have that for complements of hyperplane
arrangements defined over K, all triple Massey products over F` are trivial, as long as h > 1.
In [Mat06], Matei showed that for every odd prime `, there is a (non-simply connected) com-
plement of hyperplane arrangements X in C3 with a non-trivial triple Massey product in
H2(X,F`). These two facts do not contradict each other since Matei’s hyperplane arrange-
ment cannot be modeled over a p-adic field K with residue field Fq unless ` divides q − 1
(indeed, it requires K to have all `-th root of unity) but in that case h = 1 and Theorem
7.12 is vacuous.

The above result applies to configuration spaces of m points in Cd. We get:

Theorem 7.14. For any finite field F`, the dg-algebra C∗sing(Fm(Cd),F`) is N -formal, with

N =

⌊
(`− 2)(2d− 1)

d

⌋
.

Proof. The space Fm(Cd) is the complement of a good codimension d subspace arrangement
defined over any of the fields Qp (in fact it can be defined over Z). We can thus pick a
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prime number p such that p generates F×` and we get the desired result from the previous
theorem. �

Corollary 7.15. For any finite field F`, the dg-algebra C∗sing(Fm(Cd),F`) is formal when
` ≥ (m− 1)d+ 2.

Proof. The cohomology of C∗sing(Fm(Cd),F`) is concentrated in degree ≤ (m − 1)(2d − 1).
Therefore, by the previous theorem, this dg-algebra is formal when

(m− 1)(2d− 1) ≤ (`− 2)(2d− 1)

d
. �

Example 7.16. Consider the configuration space Fm(C) of m points in C. In [Sal20] it
is shown that C∗sing(Fm(C),F2) is not formal for any m ≥ 4, and the question of whether
C∗sing(Fm(C),F`) is formal for ` > 2 is left open. Corollary 7.15 gives formality whenever
m ≤ ` − 1. Note as well that Theorem 7.12 ensures that if ` ≥ k then all k-tuple Massey
products are trivial in H∗(Fm(C),F`). This partially answers a question raised at the end of
[Sal20], asking how far one has to go on the filtered model to find obstructions to formality
of the dg-algebra C∗sing(Fm(C),F`).

Remark 7.17. In [BdBH21], similar formality results are obtained for the spaces Fm(Rd)
with d not necessarily even. The strategy of proof is the same as the one used here, after
building an automorphism on the dg-algebra of singular cochains that plays the role of the
Frobenius automorphism. However, contrary to the situation here, that automorphism does
not come directly from algebraic geometry.

In [DCH21], these formality results are proved over the ring Z` instead of F`. This paper
uses homotopy transfer techniques instead of the∞-categorical methods used in the present
paper.
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