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Abstract. Any Batalin-Vilkovisky algebra with a homotopy trivialization of the BV-operator
gives rise to a hypercommutative algebra structure at the cochain level which, in general, contains
more homotopical information than the hypercommutative algebra introduced by Barannikov
and Kontsevich on cohomology. In this paper, we use the purity of mixed Hodge structures to
show that the canonical hypercommutative algebra de�ned on any compact Calabi-Yau manifold
is formal. We also study related hypercommutative algebras associated to compact Kähler and
Hermitian manifolds.

1. Introduction

Motivated by the mirror symmetry program, Barannikov and Kontsevich de�ned a canonical hy-
percommutative algebra structure on the cohomology of any compact Calabi-Yau manifold [BK98].
More generally, they gave a recipe for obtaining such a structure on the cohomology of any Batalin-
Vilkovisky algebra satisfying the so-called d∆-condition. This recipe, described in detail by Manin
[Man99a], [Man99b], arises as an abstract interpretation of the Tian-Todorov lemma leading to
unobstructedness of the deformation theory of Calabi-Yau manifolds. It has been successfully ap-
plied to various geometric settings, such as symplectic manifolds satisfying Hard Lefschetz [Mer98]
and compact Kähler manifolds [CZ00].

More recently, Drummond-Cole and Vallette [DCV13] re�ned the above recipe by obtaining a
homotopy hypercommutative structure on cohomology which allows one to recover the homotopy
type of the original Batalin-Vilkovisky algebra. Its truncation to a strict hypercommutative algebra
is the one de�ned by Barannikov and Kontsevich via deformation theory. The scope of this re�ned
theory is wider, in the sense that the d∆-condition on the initial Batalin-Vilkovisky algebra is
replaced by a weaker condition called Hodge-to-de-Rham degeneration. This turns out to be a suf-
�cient condition for the existence of a homotopy trivialization of the Batalin-Vilkovisky operator.
The emergence of a hypercommutative algebra structure from this data is a re�ection of the fact
that the homotopy quotient of the framed little discs operad by rotations is weakly equivalent to
the operad of moduli spaces of stable genus 0 curves [DC14b]. In [KMS13], Khoroshkin, Markarian
and Shadrin proved an algebraic counterpart of this result, providing an explicit quasi-isomorphism
between the operad Hycom = {H∗(M0,•+1)} governing hypercommutative algebras and the homo-
topy quotient BV/∆ governing Batalin-Vilkovisky algebras enhanced with a trivialization of the
BV-operator. In particular, the hypercommutative structure associated to a Batalin-Vilkovisky
algebra exists at the cochain level, rather than on cohomology.

As shown in [DCV13], even under the stronger d∆-condition, the hypercommutative structure
at the cochain level is not formal in general. The authors ask whether, in the case of Calabi-
Yau manifolds, the hypercommutative structure obtained by Barannikov and Kontsevich on its
cohomology, contains all the information of the homotopy type of the original Batalin-Vilkovisky
algebra, thus giving formality. Drummond-Cole gave an a�rmative answer in the case of low-
dimensional Calabi-Yau manifolds [DC14a]. In this paper, we give a positive answer in the general
case of arbitrary dimension.

The standard proof of the well-known Formality Theorem for the de Rham algebra of com-
pact Kähler manifolds [DGMS75] uses the fact that the ∂∂-condition gives quasi-isomorphisms of
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commutative algebras

(A, ∂,∧)←↩ (Ker(∂), ∂,∧) � (H, 0,∧)

In the case of a Batalin-Vilkovisky algebra (A, d, ·,∆) satisfying the d∆-condition one is led to
consider an analogous string of quasi-isomorphisms

(A, d, ·,∆)←↩ (Ker(∆), d, ·, 0) � (H, 0, ·, 0).

However, since Ker(∆) is not a commutative algebra with respect to the commutative product,
the above maps do not lead to formality of the BV-algebra, but only of the associated Lie algebra,
whose Lie bracket measures the failure of ∆ to be a derivation. The formality of such Lie algebra
immediately leads to the unobstructedness of its associated deformation theory.

A more abstract approach to the formality of Kähler manifolds uses the fact that their coho-
mology carries pure Hodge structures, and that the �ltrations de�ning such Hodge structures exist
at the cochain level. More generally, the theory of mixed Hodge structures also leads to formality
results in certain situations. Both the operad of Batalin-Vilkovisky algebras and the hypercommu-
tative operad may be described as homologies of geometric objects and as such, they carry natural
mixed Hodge structures satisfying certain purity properties. Moreover, the quasi-isomorphism of
operads Hycom −→ BV/∆, relating hypercommutative algebras with Batalin-Vilkovisky algebras
with a trivialization of the BV-operator, is compatible with such mixed Hodge structures. It there-
fore makes sense to talk about hypercommutative algebras in mixed Hodge structures and, more
generally, in mixed Hodge complexes. We actually consider C-mixed Hodge objects, for which
there is no real structure and there are two (possibly unrelated) �ltrations F and F that are n-
opposed in each n-graded piece of the weight �ltration. In this paper, we adapt the �purity implies
formality� machinery of [CH20] to show that any hypercommutative algebra in C-mixed Hodge
complexes whose Hodge structure is pure in cohomology, is formal as a hypercommutative algebra
in complexes of vector spaces. We study three geometric instances where this situation applies:

I. Kähler manifolds. Consider the complex de Rham algebra A := A∗dR(M)⊗R C of a complex

manifold M . Given a Hermitian metric one obtains a decomposition d∗ = ∂
∗

+ ∂∗ of the formal

adjoint to d = ∂ + ∂. Note that ∂
∗
and ∂∗ are not derivations in general. Instead, as shown by

Cao-Zhou in [CZ00] and [CZ99], in the case of a Kähler manifold, the tuples

ADol := (A, d = ∂,∧,∆ = −i∂∗) and AdR := (A, d = ∂ + ∂,∧,∆ = i(∂
∗ − ∂∗))

are BV-algebras which satisfy the d∆-condition. Furthermore, there is a canonical trivialization
of the operator ∆, given in terms of the Green operator. This allows one to talk about canonically
induced hypercommutative structures in cohomology. We show:

Theorem 4.4. For any compact Kähler manifold, the canonical hypercommutative structures de-
�ned on ADol and AdR are formal and quasi-isomorphic.

II. Calabi-Yau manifolds. Let nowM be a compact Calabi-Yau manifold of complex dimension

m and consider the complex bigraded algebra given by Lp,q := Γ(M,ΛpT⊗ΛqT
∗
), where T denotes

the holomorphic tangent bundle ofM . The algebra structure is determined by the exterior product
∧. There is an isomorphism of bigraded vector spaces η : Lp,q → Am−p,q given by the contraction
α 7→ α ` Ω with the nowhere vanishing holomorphic m-form Ω. Note that such isomorphism does
not preserve the product structures. In fact, the exterior product on A has di�erent bidegree.
Consider on L the operators ∂η := η−1 ◦ ∂ ◦ η and ∂η := η−1 ◦ ∂ ◦ η. Barannikov and Kontsevich
showed in [BK98] that the tuple

LDol := (L, d = ∂η,∧,∆ = ∂η)

is a Batalin-Vilkovisky algebra satisfying the d∆-condition. As conjectured by Cao-Zhou in [CZ00],
this algebra should correspond, via mirror symmetry, to the algebra ADol introduced earlier. With
this idea in mind, and with the objective to obtain an object in mixed Hodge complexes, we
introduce a �de Rham version� of this Batalin-Vilkovisky algebra

LdR := (L∗,∗, d := ∂η + ∂∗η ,∧,∆ := ∂η − ∂
∗
η)

which, conjecturally, corresponds to AdR through mirror symmetry. The incorporation of the extra
terms in both the di�erential and the BV-operator allow for the spectral sequences associated to
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both the column and row �ltrations to degenerate at the �rst stage. This is a necessary condition
for obtaining a hypercommutative algebra in C-mixed Hodge complexes. We show:

Theorem 4.9. For any compact Calabi-Yau manifold, the canonical hypercommutative structures
de�ned on LDol and LdR are formal and quasi-isomorphic.

III. Hermitian manifolds. A third geometric situation arises by considering, on a complex
manifold, the tuple (A, ∂,∧, ∂) as a BV-algebra. In this case, ∂ is obviously a derivation and so
this is a BV-algebra whose associated Lie bracket is trivial. In the compact Kähler case, the ∂∂-
condition immediately implies that such BV-algebra is formal and the induced hypercommutative
structure is trivial. The interesting situation is therefore outside the Kähler setting. We show that
for a compact Hermitian manifold, the induced hypercommutative algebra structure is not formal
in general, and contains more information than the purely commutative structure. We do this by
computing higher operations on the Kodaira-Thurston manifold.

The paper is organized as follows. In Section 2 we collect preliminaries on Batalin-Vilkovisky
and hypercommutative algebras. In particular, we recall, following [KMS13], the procedure for
obtaining a hypercommutative algebra structure at the cochain level, from a Batalin-Vilkovisky
algebra with a trivialization of ∆. Section 3 concerns mixed Hodge structures and formality.
Mainly, we adapt the �purity implies formality� result of [CH20] to the setting of complex mixed
Hodge structures (rather than real mixed Hodge structures) and prove a general result of formality
for operadic algebras with pure cohomology, whose governing operad is also pure. Lastly, in Section
4 we study the three main geometric situations mentioned above.
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2. From Batalin-Vilkovisky to hypercommutative algebras

In this preliminary section, we collect some results on double complexes, Batalin-Vilkovisky
algebras and hypercommutative algebras.

2.1. Double complexes and the d∆-condition. Let (A, d,∆) be a double complex of vector
spaces, with d and ∆ linear operators of degree +1 and −1 respectively and satisfying

d2 = ∆2 = d∆ + ∆d = 0.

De�nition 2.1. The d∆-condition is satis�ed if and only if

Ker(d) ∩ Im(∆) = Ker(∆) ∩ Im(d) = Im(d∆).

Associated to a double complex there are various cohomologies: aside from the d- and ∆-
cohomologies

Hd :=
Ker(d)

Im(d)
and H∆ :=

Ker(∆)

Im(∆)

we also have the Bott-Chern HBC and Aeppli HA cohomologies, given respectively by

HBC :=
Ker(d) ∩Ker(∆)

Im(d∆)
and HA :=

Ker(d∆)

Im(d) + Im(∆)
.

The identity induces maps

HBC

��

// H∆

��
Hd

// HA

which are isomorphisms if and only if the d∆-condition is satis�ed (see Lemma 5.15 of [DGMS75]).
In particular, in this case there is �only one cohomology�, which we just denote by H. The following
is straightforward:
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Lemma 2.2. Let (A, d,∆) be a double complex satisfying the d∆-condition. Then:

(i) The inclusions of complexes (Ker(∆), d) ↪→ (A, d) and (Ker(d),∆) ↪→ (A,∆) are quasi-
isomorphisms.

(ii) The surjections of complexes (Ker(∆), d) � (H, 0) and (Ker(d),∆) � (H, 0) are quasi-
isomorphisms.

De�nition 2.3. A homotopy transfer diagram for a cochain complex (A, d) is given by a diagram

(A, d) (Hd, 0).
ρ

ι
h

where ι and ρ are morphisms of complexes such that ρι = Id and h is a homotopy of morphisms
of cochain complexes from ιρ to the identity, so that dh+ hd = Id− ιρ.

Lemma 2.4. Let (A, d,∆) be a double complex satisfying the d∆-condition. Then there is homo-
topy transfer diagram (ι, ρ, h) such that ∆ι = 0, ρ∆ = 0 and h∆ + ∆h = 0.

Proof. By [DGMS75, Proposition 3.17], the d∆-condition allows one to write A in each degree as
a direct sum decomposition

An = Hn ⊕ Sn ⊕ dSn−1 ⊕∆Sn+1 ⊕ d∆Sn,

where Hn is the cohomology of A in degree n and the di�erentials d and ∆ are given by

d(x, y, dz,∆w, d∆t) = (0, 0, dy, 0, d∆w) and ∆(x, y, dz,∆w, d∆t) = (0, 0, 0,∆y,−d∆z).

De�ne ι : H → A and ρ : A→ H respectively by inclusion and projection to the �rst component.
De�ne h : Ap,q → Ap,q−1 by h(x, y, dz,∆w, d∆t) := (0, z, 0,∆t, 0). �

2.2. Batalin-Vilkovisky algebras. A Batalin-Vilkovisky algebra is a Gerstenhaber algebra to-
gether with a compatible unary operation squaring to zero. While Gerstenhaber algebras may
be identi�ed with algebras over the homology of the little disks operad, the operad BV encoding
Batalin-Vilkovisky algebras is given by the homology of the framed little disks operad [Get94].

De�nition 2.5. A BV-algebra structure on a cochain complex (A, d) is given by a symmetric
binary product · : A× A −→ A of degree 0, together with a unary operator ∆ : A → A of degree
-1, such that:

(1) The triple (A, d,∆) is a double complex:

d2 = d∆ + ∆d = ∆2 = 0.

(2) The triple (A, d, ·) is a dg-commutative algebra:

x · y = (−1)|x|·|y|y · x and d(x · y) = dx · y + (−1)|x|x · dy.
(3) The binary operation [−,−] : A×A −→ A de�ned by

[x, y] := (−1)|x|(∆(x · y)− (∆(x) · y)− (−1)|x|x ·∆(y))

de�nes, for all x, a derivation [x,−] of degree |x|−1 with respect to the commutative product:

[x, (y · z)] = [x, y] · z + (−1)(|x|−1)·|y|y · [x, z].

Remark 2.6. Note that the last condition is equivalent to imposing the relation

∆(x · y · z) = ∆(x · y) · z + (−1)|x|x ·∆(y · z) + (−1)(|x|−1)·|y|y ·∆(x · z)−
−∆(x) · y · z − (−1)|x|x ·∆(y) · z − (−1)|x|+|y|x · y ·∆(z)

appearing in [Get94] to de�ne a Batalin-Vilkovisky algebra. In particular, by Proposition 1.2 of
[Get94], given a BV-algebra (A, d, ·,∆) with associated bracket [−,−], then (A, d, ·, [−,−]) is a
Gerstenhaber algebra and so (A, d, [−,−]) is a dg-Lie algebra.

Remark 2.7. The d∆-condition implies in particular that the associated dg-Lie algebra (A, [−,−], d)
is both formal and quasi-abelian. Indeed, we have quasi-isomorphisms of dg-Lie algebras

(A, [−,−], d)
∼←− (Ker(∆), [−,−], d)

∼−→ (H, 0, 0).

Note however that the above are not maps of BV-algebras: the Lie bracket is an obstruction for
∆ to be a derivation, and so in general (Ker(∆),∧) is not a commutative algebra. Therefore these
maps do not give formality of the BV-algebra.
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2.3. Hypercommutative algebras. Following [KMS13], we review the equivalence between the
category of Batalin-Vilkovisky algebras enhanced with the trivialization of ∆ and the category of
hypercommutative algebras.

De�nition 2.8. A hypercommutative algebra is a cochain complex (A, d) with a sequence of graded
symmetric n-ary operations

mn : A⊗n → A

of degree 2(2 − n), compatible with the di�erential and satisfying the following generalized asso-
ciativity condition: for all n ≥ 0 and a, b, c, xj ∈ A,∑

S1∪S2={1,··· ,n}

±m∗(m∗(a, b, xS1
), c, xS2

) =
∑

S1∪S2={1,··· ,n}

±m∗(a,m∗(b, c, xS1
), xS2

),

where ± is the Koszul sign rule and xS denotes xs1 , · · · , xsm for S = {s1, · · · , sm}.

Remark 2.9. We may think of the operations in a hypercommutative algebra as the Taylor
coe�cients of a formal deformation of the commutative product: the above relations are equivalent
to asking that the binary operation

(a, b) 7→
∑ ~n

n!
mn+2(a, b, x, · · · , x) ∈ A[[~]]

is associative for any x (see [Get95]).

The operad Hycom encoding hypercommutative algebras is a cyclic operad which may be iden-
ti�ed with the homology H∗(M0,•+1) of the moduli spaces of stable genus zero curves and marked
points [Get95], [KM97]. With this identi�cation, the arity n generator in Hycom corresponds to
the fundamental class

[M0,n+1] ∈ H2(n−2)(M0,n+1).

In [KMS13], Khoroshkin, Markarian and Shadrin give a quasi-isomorphism of operads

Hycom −→ BV/∆,

where BV/∆ denotes the homotopy quotient of the operad BV by the generator ∆.
The operad BV/∆ is de�ned by adding, to BV, generators ϕi of degree −2i, for n ≥ 1 together

with a di�erential δ de�ned as follows: write ϕ(z) :=
∑
n≥1 ϕiz

n, where z is a formal parameter.
The expansion of the equation

(1) exp(ϕ(z))d = (d+ ∆z) exp(ϕ(z))

gives the various terms

∆ = [d, ϕ1],

0 = [d, ϕ2] + 1
2 [[d, ϕ1], ϕ1],

0 = [d, ϕ3] + [[d, ϕ1], ϕ2] + [[d, ϕ2], ϕ1] + 1
6 [[[d, ϕ1], ϕ1], ϕ1],

· · ·

The di�ererential δ on ϕi is then de�ned by the equation δϕi := [d, ϕi]. The lower terms are:

δϕ1 = ∆,

δϕ2 = − 1
2 [∆, ϕ1],

δϕ3 = −[∆, ϕ2] + 1
3 [[∆, ϕ1], ϕ1],

· · ·

The map of operads Hycom −→ BV/∆ is de�ned by assigning, to each generator mn ∈ Hycom(n),
an element θi in BV/∆(n) represented by a �nite sum of combinations of the arity 2 product of
BV together with generators ϕj1 , · · · , ϕjk with j1 + · · ·+ jk = n− 2 (we refer to [KMS13, Section
1.2] for details).
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Example 2.10. The lowest terms are θ2(x, y) = x · y and

θ3(x, y, z) = ϕ1(x · (y · z)) + ϕ1(x) · (y · z) + x · (ϕ1(y) · z) + x · (y · ϕ1(z))−
−ϕ1(x · y) · z − (−1)|y|·|z|ϕ1(x · z) · y − x · ϕ1(y · z).

Note that in [KMS13], the signs for θ3 are wrong, as noted by Muro in [Mur].

The above description gives a method for producing a hypercommutative algebra from any
BV-algebra (A, d,∧,∆) enhanced with a homotopy that trivializes the BV-operator: assume there
is a homotopy transfer diagram (ι, ρ, h) for the complex (A, d), satisfying the Hodge-to-de-Rham
degeneration condition

ρ(∆h)k−1∆ι = 0 for all k ≥ 1.

Then a solution ϕ(z) :=
∑
n≥0 ϕnz

n to Equation (1) is given by

ϕn =
(h∆)n

n
− n

n∑
`=1

(h∆)`−1ιρ(∆h)n−`+1

`

(see Remark 2.2 of [DSV15]). In particular, we get the following proposition.

Proposition 2.11. Let (A, d,∧,∆) be a BV-algebra together with homotopy transfer diagram
(ι, ρ, h) for the complex (A, d), satisfying ∆ι = ρ∆ = h∆ + ∆h = 0. Then (A, d) carries a hyper-
commutative structure, where the operation mn of degree 4− 2n is given by a �nite composition of
the commutative product ∧ together with copies of the unary operation h∆.

Proof. It su�ces to check that, in this case, we have ϕ1 = h∆ and ϕn = 0 for all n > 1. �

3. Weights and formality

We explain in this section how to obtain formality using the theory of weights. We adapt the
theory developed in [CH20] to the setting of complex mixed Hodge structures, and prove a result
of formality for operadic algebras whose cohomology is pure.

3.1. Complex mixed Hodge structures. Classically, Hodge structures are de�ned on a vector
space V de�ned over a sub�eld of the real numbers. Then, on the complexi�cation VC := V ⊗ C,
there is a notion of complex conjugation and having a pure Hodge structure of weight n on V is
equivalent to having a �ltration F on VC which is n-opposed to its complex conjugate �ltration.
We will instead be considering complex Hodge structures. These are given by pairs of n-opposed
�ltrations on a complex vector space, which are not necessarily complex conjugate to each other.

De�nition 3.1. Let n be an integer. Two decreasing �ltrations F and F on a vector space V are
said to be n-opposed if

GrpFGr
q

F
V = 0 for all p+ q 6= n.

This is equivalent to asking that F pV ⊕ F qV ∼= V for all p, q such that p+ q = n+ 1.

De�nition 3.2. A C-mixed Hodge structure is a complex vector space V with an increasing
�ltration W and two decreasing �ltrations F and F such that, for all n, the �ltrations F and F
induced on GrWn V := WnV/Wn−1V are n-opposed:

GrpFGr
q

F
GrWn V = 0 for all p+ q + n 6= 0.

Denote byMHSC the category of C-mixed Hodge structures. It is an abelian symmetric monoidal
category. Morphisms in this category, de�ned as morphisms of complex vector spaces compatible
with all �ltrations, are in fact strictly compatible with each �ltration. This follows from Deligne's
splitting lemma, which is central in the study of mixed Hodge structures:

Lemma 3.3 (Deligne's splitting lemma ([Del71], Lemma 1.2.11)). Let (V,W,F, F ) be a C-mixed
Hodge structure. There are functorial decompositions

V =
⊕

Ip,qi for i = 0, 1

such that
F pV =

⊕
p′≥p

Ip
′,q′

0 , F qV =
⊕
q′≥q

Ip
′,q′

1 and WmV =
⊕

m≤p+q

Ip,qi .
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In order to obtain mixed Hodge structures on the cohomology of complex algebraic varieties,
Deligne [Del74] introduced mixed Hodge complexes as objects somewhat more �exible than com-
plexes of mixed Hodge structures. The following de�nition is a shifted version of the corresponding
notion in the setting of C-mixed Hodge structures.

De�nition 3.4. A C-mixed Hodge complex is a cochain complex (A, d) over C with three �ltrations
W , F and F satisfying:

(H0) The cohomology H∗(A) is of �nite type.
(H1) The di�erential is strictly compatible with the three �ltrations W , F and F .
(H2) For all p, the �ltrations induced by F and F on Hn(GrWp A) are p-opposed.

Denote by MHCC the category C-mixed Hodge complexes. Morphisms are given by morphisms
of cochain complexes compatible with all �ltrations. The cohomology of any C-mixed Hodge
complex is a graded C-mixed Hodge structure. Also, there is an inclusion Ch∗(MHSC) ↪→ MHCC.
Note that given a mixed Hodge complex in the sense of Deligne, one may always get a C-mixed
Hodge complex by taking the décalage of the weight �ltration on its complex part.

Beilinson gave an equivalence of categories between the derived category of mixed Hodge struc-
tures and the homotopy category of mixed Hodge complexes. In [CH20] we gave a symmetric
monoidal enhancement of this result in terms of ∞-categories. We prove an analogous result for
C-mixed Hodge complexes.

Proposition 3.5. The inclusion Ch∗(MHSC) ↪→ MHCC induces an equivalence of symmetric
monoidal ∞-categories.

Proof. Since both ∞-categories are stable and the inclusion is exact and symmetric monoidal, it
su�ces to prove that the inclusion induces an equivalence of homotopy categories

D(MHSC)
∼−→ Ho(MHCC).

This follows analogously to Beilinson's equivalence for the case of real mixed Hodge structures
(see [Be��86], see also [CG16]). The only minor di�erence is the proof that every C-mixed Hodge
complex (A, d,W,F, F ) is quasi-isomorphic to its cohomology, giving that the inclusion induces an
essentially surjective functor at the homotopy level. We explain this below.

Since Hn(A) is a C-mixed Hodge structure, for every n ≥ 0 there are decompositions

Hn(A) =
⊕

Hp,q
i for i = 0, 1

with the properties of Lemma 3.3. Take sections σ : Hp,q
0 → Zn(A) and σ : Hp,q

1 → Hn(A).

Since the spectral sequence associated to any of the �ltrations W , F and F degenerates at E1, we
obtain a morphism of complexes σ : Hn(A) → A compatible with W and F and a morphism of
complexes σ : Hn(A)→ A compatible with W and F . Now, for any cohomology class x ∈ Hn(A),
the di�erence (σ − σ)(x) is a coboundary. The strictness of d with respect to W ensures that if
x ∈Wp, then there is y ∈Wp with (σ−σ)(x) = dy. Therefore the map Σ(x) := y gives a homotopy
Σ : σ ' σ compatible with W . We next strictify the triple (σ, σ,Σ) using the mapping cylinders
of σ and σ. The mapping cylinder of σ carries compatible �ltrations W and F , given by

WmF
pCyln(σ) := WmF

pHn+1(A)⊕WmF
pAn ⊕WmF

pHn(A)

with di�erential d(x, a, x′) = (0, da − σx, 0). The mapping cylinder for σ is de�ned analogously,
and carries �ltrations W and F . There is an isomorphism of complexes compatible with W

ϕ : Cyl(σ)→ Cyl(σ) given by (x, a, x′) 7→ (x, a− Σ(x), x′).

The �ltration F de�ned on Cyl(σ) by

F pCyl(σ) := ϕ−1(F pCyl(σ))

is compatible with the di�erential and so (Cyl(σ), d,W, F, F ) is a tri�ltered complex. The inclusions
i : H∗(A)→ Cyl(σ)← A : j are compatible with the three �ltrations and induce isomorphisms in
cohomology. In particular, the axioms (H0) − (H2) for a C-mixed Hodge complex are veri�ed by
Cyl(σ) and so A and H∗(A) are isomorphic in Ho(MHCC). �
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3.2. Purity implies formality. On the category of graded vector spaces over a �eld K, there are
two distinct choices of braiding isomorphisms that make it into a symmetric monoidal category.
In one of them, the isomorphism

A⊗B → B ⊗A
sends an elementary tensor of homogeneous elements a ⊗ b to b ⊗ a in the other a ⊗ b is sent
to (−1)|a||b|b ⊗ a. We shall denote these symmetric monoidal structures GrVectK and grVectK
respectively. In the �rst category, the source for gradings will be the weights of mixed Hodge
theory, while in the second category gradings are cohomological.

We recall the de�nition of formality for algebras over graded operads. There is an obvious
symmetric monoidal functor

T : grVectK → Ch∗(K)

giving a graded vector space the trivial di�erential. Let O be an operad in grVectK. We shall often
omit T in the notation and view a graded object as a chain complex via T . The functor T induces
a functor

T : AlgO(grVectK)→ AlgO(Ch∗(K))

De�nition 3.6. An O-algebra is said to be formal if it is in the homotopical essential image of
the functor T .

Remark 3.7. There are two ways of interpreting this de�nition depending on whether we consider
the model category of O-algebras or the ∞-category of O-algebras. It turns out that these two
ways are equivalent thanks to a rigidi�cation theorem due to Haugseng [Hau19, Theorem 4.10].
The ∞-categorical interpretation will be more convenient to work with in the following.

De�nition 3.8. Let α 6= 0 be a rational number. A C-mixed Hodge complex (A, d,W,F, F ) is
said to be α-pure if

GrWp H
n(A) = 0 for all p 6= αn.

The full subcategory MHCα-pureC of C-mixed Hodge complexes that are α-pure is a symmet-
ric monoidal category. The main result of [CH20] gives formality for algebraic varieties whose
cohomology is α-pure, where W is Deligne's weight �ltration.

We shall now adapt the theory to the case of interest to us. We consider the ∞-category
Ch∗(GrVectK) of cochain complexes of graded vector spaces with quasi-isomorphisms inverted.
We denote by Ch∗(GrVectK)

α-pure
the full subcategory whose objects are the chain complexes such

that

Hn(C)p = 0 for all p 6= αn.

Clearly the symmetric monoidal structure on Ch∗(GrVectK) restricts to one on Ch∗(GrVectK)
α-pure

.

Proposition 3.9. Let α = r/s with r and s two coprime integers. The cohomology functor

Ch∗(GrVectK)
α-pure → grVectK

induces a symmetric monoidal equivalence of ∞-categories onto the full subcategory of grVectK
spanned by graded vector spaces that are zero except in degree divisible by s.

Proof. This functor is clearly essentially surjective. In order to prove that it is fully faithful,
it su�ces to observe the following formula for the homotopy groups of the mapping spaces in
Ch∗(GrVectK)

πkMapCh∗(GrVectK)(C,D) =
⊕
i∈Z

[Ci, Di[k]]

in particular, we see that if C and D are both α-pure, all the higher homotopy groups are trivial
and we have

π0MapD(GrVectK)(C,D) =
⊕
j∈Z

Hom(Hsj(Crj), H
sj(Drj))

This shows that the cohomology functor is fully faithful. �

Theorem 3.10. Let O be an operad in graded mixed Hodge structures which is α-pure. Every
O-algebra in α-pure mixed Hodge complexes is formal as an algebra in Ch∗(C).
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Proof. An immediate consequence of Deligne's splitting gives a homotopy commutative diagram
of symmetric monoidal ∞-categories

Ch∗(MHSC)
' //

G

��

MHCC

��
Ch∗(GrVectC) // Ch∗(C)

where the top map is the equivalence of Proposition 3.5, G is the associated graded of the weight
�ltration and the unlabelled maps are the obvious forgetful maps. This gives us a homotopy
commutative square of ∞-categories

AlgO(Ch∗(MHSC))
' //

G

��

AlgO(MHCC)

��
AlgO(Ch∗(GrVectC)) // AlgO(Ch∗(C))

(in each case O should be considered as an operad in the relevant ∞-category but we have kept
the same notation everywhere for simplicity).

We can restrict to α-pure objects and we obtain a homotopy commutative square

AlgO(Ch∗(MHSC)
α-pure

)
' //

G

��

AlgO(MHCα-pureC )

��
AlgO(Ch∗(GrVectC)

α-pure
) // AlgO(Ch∗(C))

From this diagram, we see that it su�ces to check that the image of the bottom map consists of
formal O-algebras.

By the previous proposition, we have a homotopy commutative triangle of symmetric monoidal
∞-categories

Ch∗(GrVectK)
α-pure H∗ //

((

grVectK

T

��
Ch∗(K)

which induces a homotopy commutative square

AlgO(Ch∗(GrVectK)
α-pure

)
H∗ //

**

AlgO(grVectK)

T

��
AlgO(Ch∗(K))

Therefore the essential image of the diagonal map consists of formal O-algebras as desired. �

Remark 3.11. The same proof of Theorem 3.10 is also of course valid for classical mixed Hodge
complexes, whose weight �ltration exists on a cochain complex de�ned over a �eld K ⊆ R. In this
case, the formality of the underlying algebra is obtained over K.

Remark 3.12. One of the main results of [CH20] gives formality of the forgetful functor

MHCα-pureC −→ Ch∗(K)

as a symmetric monoidal functor. This result, although closely related to Theorem 3.10 above
does not seem to imply it. Indeed, given an O-algebra A in pure C-mixed Hodge complexes, the
formality of this functor gives formality of the pair (O, A) in the �bred category of algebras over
all operads: assuming that O has trivial di�erential, this means that there are quasi-isomorphisms
of O∞-algebras F ∗A ← • → G∗H(A), where F,G : O∞ → O are (possibly distinct) quasi-
isomorphisms of operads. Therefore in general, one does not obtain formality of A as an O-algebra
from the formality of functors.
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3.3. Mixed Hodge theory of hypercommutative algebras. The moduli spaces M0,• are
smooth complex projective schemes and as such, their homology carries pure Hodge structures.
Therefore we can view Hycom as an operad in graded C-mixed Hodge structures which is 1-
pure. The generator mi of Hycom(n), which corresponds to the fundamental class [M0,n+1] ∈
H2(n−2)(M0,n+1), has pure weight 4− 2i, so that:

mn ∈W4−2nF
2−nF 2−nHycom(n)4−2n.

In particular, a hypercommutative algebra in C-mixed Hodge complexes is just a mixed Hodge
complex (A, d,W,F, F ) together with the structure of a hypercommutative algebra {mn} with the
above compatibility condition with respect to the �ltrations W , F and F , so that∑

∑
mi=m,

∑
pi=p,

∑
qi=q

Wm1F
p1F q1A⊗ · · · ⊗WmnF

pnF qnA ⊆Wm+4−2nF
p+2−nF q+2−nA.

The operad BV can be viewed as an operad in graded mixed Hodge structures. This can be
done in an ad-hoc manner by declaring that BVk(n) is of pure Hodge type (−k,−k) for any value
of n. This can be given a geometric interpretation as the homology of a speci�c model of the
framed little 2-disks operad (see [Vai19]). In particular, the arity 1 generator ∆ has pure weight
−2, so that

∆ ∈W−2F
−1F−1BV(1)−1.

We can also make BV/∆ into a C-mixed Hodge complex by setting the generators ϕn of degree
−2n, to be of pure weight −2n, so that

ϕn ∈W−2nF
−nF−nBV/∆(1)−2n.

With this de�nition, the di�erential δ of BV/∆ has weight zero and is strictly compatible with
respect to all �ltrations. Since ∆ is trivial in homology, BV/∆ is an operad in MHCC which is
1-pure. Note as well that the map Hycom → BV/∆ is compatible with all �ltrations and so it is
a map of 1-pure C-mixed Hodge complexes.

The following is now an immediate consequence of Theorem 3.10:

Corollary 3.13. Let A be a hypercommutative algebra in 1-pure C-mixed Hodge complexes. Then
A is formal as a hypercommutative algebra in cochain complexes of C-vector spaces.

Remark 3.14. Of course, there is an analogous corollary for BV-algebras in C-mixed Hodge
complexes that are 2-pure. The main geometric situations that we will consider in the following
section start with a BV-algebra which can be made into a C-mixed Hodge in a compatible way.
Since the underlying objects are compact Kähler manifolds, the cohomology is 1-pure (rather than
2-pure). Therefore one does not obtain formality of the BV-algebra, but we will obtain formality
of the associated hypercommutative algebra, whose governing operad is 1-pure.

4. Hypercommutative algebra structures on complex manifolds

In this last section we prove the main results of this paper. We consider three geometric situ-
ations that lead to BV-algebras whose associated hypercommutative algebras are in fact algebras
in C-mixed Hodge complexes. Using the �purity implies formality� theory, we deduce that such
hypercommutative structures are formal.

4.1. Canonical homotopy transfer on a Hermitian manifold. LetM be a compact complex
manifold. Its complex de Rham algebra A∗ := A∗dR(M)⊗R C admits a bidegree decomposition by
forms of type (p, q):

An =
⊕
p+q=n

Ap,q,

and the exterior di�erential decomposes into two components d = ∂+∂, where ∂ has bidegree (1, 0)
and ∂ is its complex conjugate. Given a Hermitian metric 〈−,−〉 there is an associated Hodge-star
operator

? : Ap,q −→ Am−q,m−p de�ned by α ∧ ?β := 〈α, β〉vol,

where vol is the volume form determined by the metric and m is the complex dimension of M . Let
δ denote either ∂ or ∂. The operator

δ∗ := − ? δ?
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is the L2-adjoint of δ, and we have d
∗ = ∂

∗
+∂∗. Consider the associated Laplacian �δ := δδ∗+δ∗δ.

Hodge theory gives orthogonal direct sum decompositions

Ap,q = Hp,qδ ⊕�δ(Ap,q) = Hp,qδ ⊕ Im(δ) ∩ Ap,q ⊕ Im(δ∗) ∩ Ap,q.

where Hp,qδ := Ker(�δ) ∩ Ap,q denotes the space of δ-harmonic forms in bidegree (p, q). Also, we
have isomorphisms

Hp,qδ ∼= Hp,q
δ :=

Ker(δ)

Im(δ)
|(p,q)

In particular, any δ-cohomology class admits a unique δ-harmonic representative. Denote by
πδ : Ap,q → Hp,qδ the projection and by Gδ : Ap,q → Ap,q the Green operator de�ned by zero on
δ-harmonic forms and by the inverse of �δ on their orthogonal complement.

We have Gδ�δ = �δGδ and any linear operator commuting with �δ also commutes with Gδ.
In particular, Gδ commutes with δ and δ∗. The following is a matter of veri�cation.

Lemma 4.1. For a compact Hermitian manifold there is homotopy transfer diagram (ι, ρ, h) for the
complex (A, ∂), where ι : H∂ → A and ρ : A → H∂ are given by taking ∂-harmonic representatives

and projecting to ∂-harmonic forms respectively and h := ∂
∗
G∂ .

Assume now that M is a compact Kähler manifold. We will be using the following main
properties for the di�erential forms of Kähler manifolds (see for instance [GH94]).

(1) The Laplacian identities �d = 2�∂ = 2�∂ identify all spaces of harmonic forms Hp,qd =
Hp,q
∂

= Hp,q∂ and so all cohomology vector spaces are canonically isomorphic:

Hd
∼=

⊕
Hp,q

∂
∼=

⊕
Hp,q
∂ .

(2) We have the Kähler identity ∂∂
∗

+ ∂
∗
∂ = 0.

(3) The double complex (A, ∂, ∂) satis�es the ∂∂-condition:

Ker(∂) ∩ Im(∂) = Ker(∂) ∩ Im(∂) = Im(∂∂).

Lemma 4.1 above gives a canonical homotopy transfer diagram for the Dolbeault complex of a
compact Hermitian manifold. There is an obvious de Rham version of the above result which is
valid for any compact Riemannian manifold. In general, given a homotopy transfer diagram for
the Dolbeault complex of a complex manifold, one may obtain a homotopy transfer diagram for
the de Rham complex by perturbation of the Dolbeault data (see Theorem 2.7 of [CSG22] and the
remark thereafter). In the Kähler case, such perturbation turns out to be trivial:

Lemma 4.2. For a compact Kähler manifold the data (ι, ρ, h) of Lemma 4.1 is also a homotopy
transfer diagram for the complex (A, d).

Proof. Since H∂ = H∂ = Ker(∂) ∩ Ker(∂∗) we have ∂ι = ρ∂ = 0. This proves that dι = ιd and

dρ = ρd. Let us prove that ∂h+ h∂ = 0, where h = ∂
∗
G∂ . We have

∂∂
∗
G∂ + ∂

∗
G∂∂ = (∂∂

∗
+ ∂
∗
∂)G∂ = 0,

where we used the Kähler identity ∂∂
∗

+ ∂
∗
∂ = 0 and the fact that, in the Kähler case, the

operators ∂ and G∂ commute (since any linear operator commuting with �∂ also commutes with

G∂ , and for Kähler manifolds we have �∂ = �∂). This gives dh+ hd = ∂h+ h∂ = Id− ιρ. �

4.2. Kähler manifolds: the BV-algebras of Cao-Zhou. On any Hermitian manifold, while ∂
and ∂ are derivations with respect to wedge product of di�erential forms, their respective formal

adjoints ∂∗ and ∂
∗
do not satisfy the Leibniz rule in general. Instead, on a compact Kähler manifold

the tuples

ADol := (A, d = ∂,∧,∆ = −i∂∗) and AdR := (A, d = ∂ + ∂,∧,∆ = i(∂
∗ − ∂∗))

are BV-algebras, as proven in [CZ00] and [CZ99]. Note that in both cases the Kähler condition is
necessary already for the relation d∆ + ∆d = 0 to be satis�ed. The following is straightforward:

Lemma 4.3. Let ∆ denote the BV-operator of either of the BV-algebras ADol and AdR. The
homotopy transfer diagram (ι, ρ, h) of Lemmas 4.1 and 4.2 satis�es ∆ι = ρ∆ = h∆ + ∆h = 0.
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The above lemma together with Proposition 2.11 de�nes hypercommutative algebra structures
on the Dolbeault and de Rham algebras of any compact Kähler manifold. Such structures are
canonical, in the sense that they only depend on the Hermitian structure of the manifold (the
complex structure together with the chosen compatible Kähler metric).

As is well known, on a Kähler manifold the commutative algebras (A, ∂,∧) and (A, d,∧) are
quasi-isomorphic and formal. In particular, we have a ring isomorphismH∂

∼= HdR and the induced
C∞-structure in cohomology is the trivial one. We promote this result to the hypercommutative
case:

Theorem 4.4. For any compact Kähler manifold, the canonical hypercommutative structures de-
�ned on ADol and AdR are formal and quasi-isomorphic.

Proof. We will make AdR into a hypercommutative algebra in pure C-mixed Hodge complexes.
Let F and F denote the column and row �ltrations respectively:

F pAn :=
⊕
q≥p

Aq,n−q and F qAn :=
⊕
p≥q

An−p,p.

Since the manifold is Kähler, the double complex (A, ∂, ∂) satis�es the ∂∂-condition and so by
Proposition 5.17 of [DGMS75] the spectral sequences associated to F and F degenerate at E1 and
induce n-opposed �ltrations on Hn. Let W be the canonical �ltration

WpAn =

 0 , p < n
Ker(d : An → An+1) , p = n
An , p > n

.

Its associated spectral sequence degenerates at E1 and H
n(GrWp A) ∼= Hn(A) if p = n. This proves

that the tuple (A, d, F, F ,W ) is a pure C-mixed Hodge complex. Since

h∆ = i∂
∗
G∂(∂

∗ − ∂∗) = −i∂∗G∂∂
∗

it follows that the hypercommutative operations mn on AdR have bidegree (2 − n, 2 − n). This
gives

mn ∈W4−2n ∩ F 2−n ∩ F 2−n

which agrees with the mixed Hodge structure on Hycom given in Section 3.3. Therefore the op-
erations mn are compatible with all �ltrations, making AdR into an hypercommutative algebra
in pure C-mixed Hodge complexes. By Corollary 3.13, it follows that AdR is a formal hypercom-
mutative algebra. This is equivalent to the formality of the Hycom∞-structure induced on Hd,
which is isomorphic to the one induced on H∂ . Indeed, both structures are de�ned using canonical
homotopy transfer diagrams which, by Lemma 4.2, are the same in both cases. In particular, H∂

is a formal Hycom∞-algebra, which is equivalent to ADol being a formal Hycom-algebra. Since
both AdR and ADol are formal hypercommutative algebras and the hypercommutative structures
on Hd and H∂ are isomorphic, it follows that AdR and ADol are quasi-isomorphic. �

We end this section with an example exhibiting that, while the above hypercommutative struc-
ture on a Kähler manifold is formal, it is still non-trivial. As we could not �nd any previous
computations of these hypercommutative structures in the literature, we believe that it may be
of interest. For this example, we actually consider a non-Kähler orbifold that satis�es the ∂∂-
condition. The above theory applies to this broader setting as well.

Example 4.5. Consider the Iwasawa manifold M = HZ \ HC, de�ned as the quotient of the
complex Heisenberg HC group by its integral subgroup. Its complex algebra of left-invariant
di�erential forms is isomorphic to the Chevalley-Eilenberg complex of the Lie algebra of HC, and
so it is given by the free commutative dg-algebra

A = Λ(a, b, c, a, b, c) with d(c) = −ab, d(c) = −ab.
Here a, b, c have bidegree (1, 0) and a, b, c have bidegree (0, 1). The inclusion of this algebra
into the complex de Rham algebra of M preserves bidegrees and induces an isomorphism on
Dolbeault cohomology. The Iwasawa manifold is a non-formal compact complex 3-fold and so it
does not satisfy the ∂∂-condition. We will however produce a ∂∂-manifold by constructing, out
of M , an orbifold of global quotient type. Consider the action σ : C3 → C3 by a �nite group of
biholomorphisms of order 4, given by σ(z1, z2, z3) = (iz1, iz2,−z3). This descends to a well-de�ned
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action on M . The resulting quotient M̂ = M/〈σ〉 is a compact orbifold with 16 isolated singular

points. As shown in Theorem 7.1 of [ST22], the orbifold M̂ admits a resolution into a smooth

∂∂-compact manifold. The sub-algebra of M of σ-invariant di�erential forms Aσ(M̂) is generated
by the elements

aa, bb, cc, ab, ba, cab, abc, abc, abc.

The only non-trivial di�erentials being ∂(cc) = −abc, ∂(cab) = −abab and their complex conjugates
∂(cc) = cab, ∂(abc) = −abab. One easily checks that this algebra satis�es the ∂∂-lemma. In
particular, its Hodge-to de Rham spectral sequence degenerates at E1. We obtain:

H∗,∗
∂

(M̂) ∼=

[abc] 0 0 [abcabc]

0 0 [acac], [acbc], [bcbc], [bcac] 0

0 [aa], [bb], [ab], [ba] 0 0

1 0 0 [abc]

Considering the standard hermitian metric on Aσ(M̂) we obtain operators ∂
∗
and ∂∗. We have

∂∗(abab) = −cab and ∂∗(abc) = cc. One easily checks that ∂∂∗+∂∗∂ = 0 and that the d∆-condition

is satis�ed, with d = ∂ and ∆ = −i∂∗. Therefore the tuple (Aσ(M̂), d = ∂,∧,∆ = −i∂∗) is a BV-

algebra (since d∆ + ∆d = 0) and we may use Proposition 2.11 to compute ϕ1 = h∆ = −i∂∗G∂∂∗.
We obtain ϕ1(abab) = −icc and ϕ1 = 0 otherwise. Using the formula of Example 2.10 we compute
a non-trivial operation of arity 3 and bidegree (−1,−1) on cohomology:

m3([aa], [bb], [bb]) = −2[ϕ1(aabb) · bb] = 2i[bcbc].

4.3. Calabi-Yau manifolds: the BV-algebra of Barannikov-Kontsevich. We recall the BV-
algebra considered by Barannikov and Kontsevich in [BK98] (see also Section III.9.12 of [Man99a]).
Let M be a compact Calabi-Yau manifold of complex dimension m. This is a compact Kähler
manifold M with trivial canonical bundle. In particular, we may choose a nowhere vanishing
holomorphic m-form Ω. Consider the complex bigraded algebra (L∗,∗,∧) given by

Lp,q := Γ(M,ΛpT ⊗ ΛqT
∗
),

where T denotes the holomorphic tangent bundle of M . The algebra structure is determined by
the exterior product ∧. There is an isomorphism of bigraded vector spaces η : Lp,q → Am−p,q
given by the contraction α 7→ α ` Ω with the holomorphic m-form Ω. Note that such isomorphism
does not preserve the product structures. Given an operator δ : A∗,∗ → A∗+p,∗+q of pure bidegree
(p, q), we will denote

δη := η−1 ◦ δ ◦ η : L∗,∗ → L∗−p,∗+q.
the operator of bidegree (−p, q) induced on L via the isomorphism η. On the other hand, the

Hermitian metric gives an isomorpism T ∼= T
∗
inducing, for each (p, q), a C-linear isomorphism

g : Lp,q → Lq,p.

Lemma 4.6 (c.f. [CZ00], Lemma 3.1). The following identities are satis�ed:

∂η = Id⊗ ∂ , ∂∗η = −g ◦ (Id⊗ ∂) ◦ g = −g ◦ ∂η ◦ g
∂
∗
η = Id⊗ ∂∗, ∂η = −g ◦ (Id⊗ ∂∗) ◦ g = −g ◦ ∂∗η ◦ g.

Proof. The two identities on the left are straightforward. We prove the identity involving ∂η. Since
both the Kähler form ω and the holomorphic m-form Ω are parallel with respect to the Levi-Civita
connection, on an open subset U ⊆ M there is a local orthonormal frame �eld {e1, · · · , em} of
the holomorphic tangent bundle T = T 1,0M (so that for all x ∈ U , {e1(x), · · · , em(x)} is an
orthonormal basis of T 1,0

p M) such that, up to a constant, Ω = e1 ∧ · · · ∧ em, and ω =
∑
ei ∧ ei,

where {e1, · · · , em} denotes the dual coframe, de�ned by ej(ei) = δji . Also, at the point x, we have

∇eiej = ∇eiej = ∇eiej = ∇eiej = 0

A standard computation shows that the operators ∂, ∂ and their adjoints may be written locally
as:

∂ = ei ∧∇ei , ∂∗ = −ei ` ∇ei , ∂ = ei ∧∇ei and ∂
∗

= −ei ` ∇ei ,
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where (X ` α)(X1, · · · , Xk−1) := α(X,X1, · · · , Xk−1) is the contraction of a vector �eld X and a
k-form α (see for instance Lemma 3.3.4 of [Jos17]).

Near x any element in Lp,q may be written as a sum of elements of the form α = feI ⊗ eJ ,
where I and J denote subsets of {1, · · · ,m} of cardinalities p and q respectively. We have

g(Id⊗ ∂∗)gα = g(Id⊗ ∂∗)(feJ ⊗ eI) = −(∇eif)g(eJ ⊗ ei ` eI) = −(∇eif)(ei ` eI)⊗ eJ .
On the other hand, we have

∂η(α) = η−1∂η(α) = η−1∂(f(eI ` Ω)⊗ eJ) = η−1(ei ∧∇eif(eI ` Ω)⊗ eJ = (∇eif)(ei ` eI)⊗ eJ .
The identity involving ∂∗η follows analogously.

�

Barannikov and Kontsevich noted in [BK98] that the complex (L∗,∗, ∂η) carries a BV-algebra

structure with the wedge product ∧ and where the ∆ operator is given by ∂η. Note that ∂η
has bidegree (0, 1) while ∂η has bidegree (−1, 0). We next de�ne a �de Rham version� of this
BV-algebra, in the sense that we add, to the di�erential and the ∆ operator, a component of
bidegree (1, 0) and (0,−1) respectively, both de�ned using the original operators together with the
involution g : Lp,q → Lq,p.

Proposition 4.7. The following tuples are all BV-algebras:

LDol := (L∗,∗, ∂η,∧, ∂η),

LDol∗ := (L∗,∗, ∂∗η ,∧,−∂
∗
η),

LdR := (L∗,∗, d := ∂η + ∂∗η ,∧,∆ := ∂η − ∂
∗
η).

Proof. The �rst is the BV-algebra of [BK98]. It is clear that (L∗,∗, ∂∗η ,−∂
∗
η) is a double complex.

Moreover, by Lemma 4.6 we have

∂∗η = −g ◦ ∂η ◦ g and ∂η = −g ◦ ∂∗η ◦ g,

where g : Lp,q → Lq,p denotes the involution induced by T ∼= T
∗
. Since this involution preserves

algebra structures and LDol is a BV-algebra, it follows that the tuple (L∗,∗,−∂∗η,∧,−∂∗η) is a

BV-algebra and so LDol∗ = (L∗,∗, ∂∗η,∧,−∂∗η) is also a BV-algebra. We now show that LdR is a

BV-algebra. The conditions d2 = ∆2 = 0 are straightforward. Also, we have

d∆ + ∆d = η−1(�∂ −�∂)η = 0.

Note that for this last property, the minus sign in ∆ = ∂η − ∂
∗
η is important. Therefore (L, d,∆)

is a double complex. It now su�ces to note that given BV-algebras (A, di,∧,∆i) for i = 0, 1 then
(A, d0 + d1,∧,∆0 + ∆1) is a BV-algebra whenever (A, d0 + d1,∆0 + ∆1) is a double complex. �

In analogy with Lemma 4.2 we have:

Lemma 4.8. The homotopy transfer diagram (ι, ρ, h) of Lemma 4.1 induces a homotopy transfer

diagram (ιη, ρη, hη) for both complexes (L, ∂η) and (L, ∂η + ∂∗η). Moreover, we have

∆ιη = ρη∆ = hη∆ + ∆hη = 0,

where ∆ denotes the BV-operator of either LDol or LdR.

The above lemma together with Proposition 2.11 de�nes canonical hypercommutative algebra
structures on LDol and LdR respectively. The main result of this paper is the following:

Theorem 4.9. For any compact Calabi-Yau manifold, the canonical hypercommutative structures
de�ned on LDol and LdR are formal and quasi-isomorphic.

Proof. The proof is analogous to that of Theorem 4.4. We �rst make LdR into a hycommutative
algebra in C-mixed Hodge complexes that is pure. Note �rst that the components of the di�erential
d = ∂η + ∂∗η of L∗,∗ have bidegrees (0, 1) and (1, 0) respectively. Let F and F be the column and

row �ltrations of L∗,∗ respectively. The double complex (L, ∂η, ∂∗η) satis�es the ∂η∂
∗
η -condition.

This follows from the fact that the Laplacians

�∂η := ∂η∂
∗
η + ∂

∗
η∂η = (�∂)η and �∂η := ∂η∂

∗
η + ∂∗η∂η = (�∂)η
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coincide, together with the Kähler identity ∂∂∗ + ∂∗∂ = 0, which makes ∂η and ∂∗η anticommute.

Therefore by [DGMS75, Proposition 5.17] the spectral sequences associated to F and F degenerate
at E1 and induce n-opposed �ltrations on Hn

d (L), where d = ∂η + ∂∗η . Let W be the canonical

�ltration. Its associated spectral sequence degenerates at E1 and Hn(GrWp L) ∼= Hn(L) if p = n.

This proves that the tuple (L, d, F, F ,W ) is a pure C-mixed Hodge complex. The bidegree of hη∆
is (−1,−1). Indeed, we have

hη∆ = η−1(i∂
∗
G∂)η(∂η − ∂

∗
η) = iη−1(∂

∗
∂G∂ − ∂

∗
∂
∗
G∂)η = iη−1∂

∗
∂G∂η.

It follows that the hypercommutative operations mn have bidegree (2− n, 2− n). This gives

mn ∈W4−2n ∩ F 2−n ∩ F 2−n

which agrees with the mixed Hodge structure on Hycom of Section 3.3. This makes LdR into a
hypercommutative algebra in pure C-mixed Hodge complexes, and so LdR is a formal hypercom-
mutative algebra by Corollary 3.13. This proves formality of LdR. The proof now follows exactly
as in Theorem 4.4. �

4.4. Hermitian manifolds: when ∆ is a derivation. We end this paper by considering a
version of a BV-algebra (A, d,∧,∆) for which ∆ is a derivation and so its associated Lie bracket is
trivial. Such algebras are called BV1-algebras in [DST22], where ∆ is understood as an operator
of order one.

Proposition 4.10. Assume that a BV1-algebra (A, d,∧,∆) satis�es the d∆-condition. Then:

(1) (A, d,∧,∆) is formal as a BV-algebra.
(2) The induced Hycom∞-structure on H is trivial.

Proof. By Lemma 2.2 the d∆-condition gives quasi-isomorphisms of BV-algebras

(A, d,∆)←↩ (Ker∆, d, 0) � (H, 0, 0).

By Lemma 2.4 there is homotopy transfer diagram (ι, ρ, h) such that

∆i = p∆ = h∆ + ∆h = 0,

giving a hypercommutative algebra structure on (A, d,∧). Therefore the above zig-zag of quasi-
isomorphisms extends to a zig-zag of homotopy transfer data and so it gives trivial data on the
complex (H, 0). In particular, the hypercommutative algebra structure on (A, d,∧) is homotopi-
cally trivial and so the induced Hycom∞-structure on H is trivial. �

Example 4.11. The Dolbeault algebra (A, ∂,∧) of any compact Kähler manifold, with the oper-
ator ∆ = ∂, �ts in the setting of Proposition 4.10. In fact, only the ∂∂-condition is needed, so the
proposition applies as well to any compact complex manifold which can be blown-up to a Kähler
manifold.

Assuming the weaker condition of Hodge-to-de-Rham degeneration data (ι, ρ, h) on a BV1-
algebra, there is still an induced hypercommutative algebra structure, in which the arity-n opera-
tion mn has bidegree (n− 2, 2−n) (and so total degree 0). This structure is not formal in general,
as shown in the following example.

Example 4.12. The Kodaira-Thurston manifold is the 4-dimensional compact nilmanifold given
by the quotient KT := HZ×Z \HR×R where HR is the Heisenberg real Lie group of dimension 3
and HZ is the integral subgroup. This manifold admits a left-invariant complex structure, making
it into a non-Kähler primary Kodaira surface. Its complex homotopy type may be described as
follows: consider the free bigraded commutative algebra

A := Λ(a, a, b, b) with |a| = |b| = (1, 0) and |a| = |b| = (0, 1).

De�ne di�erentials ∂ and ∂ on A by extending multiplicatively the table

a b a b
∂ 0 0 0 −iaa
∂ 0 iaa 0 0

.
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There is an inclusion of A into the complex de Rham algebra of KT which preserves the bidegrees
and induces an isomorphism in Dolbeault cohomology (see Example 4.3 of [CSG22] for details).
We obtain:

H∗,∗
∂

(KT ) ∼=
[ab] [bab] [abab]

[a], [b] [ab], [ba] [aba], [abb]

1 [a] [ab]

Since KT is a compact complex surface, its Frölicher spectral sequence degenerates at the �rst
page, and so the above gives the complex de Rham cohomology of KT. Considering the standard
hermitian metric on A the homotopy transfer diagram (ι, ρ, h) of Lemma 4.1 gives

h(aa) := ∂
∗
G∂(aa) = − ∗ ∂ ∗ (aa) = − ∗ ∂(bb) = −i ∗ aab = −ib,

h(aab) := ∂
∗
G∂(aab) = − ∗ ∂ ∗ (aab) = − ∗ ∂(b) = −i ∗ aa = −ibb,

and h = 0 otherwise. Moreover, this data satis�es ρ∆ι = 0 and ∆h∆ι = 0 and so the Hodge-to-
de-Rham degeneration condition is satis�ed. We have

ϕ1(b) = −b and ϕ1 = 0 otherwise,

while ϕn = 0 for all n > 1. We obtain operations of arity 3 and bidegree (−1, 1) which induce the
following non-trivial operations in cohomology:

m3([a], [b], [b]) = [a · b · ϕ1(b)] = [abb] and m3([a], [a], [b]) = [a · a · ϕ1(b)] = [aba].

There are also non-trivial C∞-operations of arity 3 and bidegree (0,−1):

µ3([a], [a], [a]) = i[ab] and µ3([a], [a], a]) = −i[ba].

This shows that the Hycom∞-structure in cohomology is not formal and carries more information
than the usual C∞-structure.
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