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Abstract. We review some algebraic models for rational or integral homotopy types
with the motivation of formalizing what it means for affine algebraic group to act on a
homotopy type. We give some applications to the construction of a motivic structure on
the homotopy type of algebraic varieties.

This paper is dedicated to the memory of Larry Breen (1944–2023).

1. A formalization of the problem

Let R be a commutative ring. We wish to answer the following vague question.

Question 1.1. How much information about a homotopy type X can be extracted from its
cohomology with coefficients in R?

There are many ways to make this question precise. Let us give some examples in the
case of ordinary cohomology with F2-coefficients.

(1) If we think of cohomology simply as a collection of abelian groups, then it is not a
fine enough invariant to distinguish S1 _ S2 from RP2.

(2) If we think of cohomology as a graded ring, we can distinguish S1 _ S2 from RP2,
but not S2 _ S3 from ΣRP2.

(3) If we think of cohomology as a module over the Steenrod algebra, then we can
distinguish S2 _ S3 from ΣRP2.

(4) Whatever structure we put on the cohomology, it will not be able to distinguish BCp

with p odd from a point.
Let us make some comments. The first three points follow from standard computations

in algebraic topology. The last point follows from the fact that the map BCp Ñ pt induces
an isomorphism on F2-cohomology. From these facts, we see first that there is no hope
of detecting more than the R-localization of the homotopy type from cohomology with
R-coefficients. We also see that, to have a good invariant, we should include at least power
operations. These power operations arise from the fact that cochains with R coefficients on
a space form a commutative algebra in the 8-category DpRq. At the point set level, this
structure is encoded by an action of a model for the E8-operad (see [BF04]).

Work by Sullivan, for R “ Q, and Mandell, for R “ Fp or Z, has shown that cochains with
R coefficients, together with their E8-structure, are a fine enough invariant to distinguish
nilpotent, finite-type homotopy types up to R-localization (see [Sul77, Man01, Man06]).

Date: October 31, 2024.
I acknowledge support from the Agence Nationale pour la Recherche through project ANR-20-CE40-0016

HighAGT and by the Centre National pour la Recherche Scientifique through project IEA00979.
1



2 GEOFFROY HOREL

However, the case of Q-coefficients is quite different from the case of Z-coefficients. Over
Q, the cochain functor is fully faithful from the category of rational, finite-type spaces to
the category of commutative algebras. Over Z, this functor is only faithful. This can be
remedied by replacing the target category with something finer, namely cosimplicial binomial
rings as in [Hor24], or variants thereof, as in [KSZ23, Ant23].

One motivation for having these algebraic models is that they can be used to formalize
what it means for an algebraic group to act on a homotopy type. In particular, in any
situation in which the cohomology of a space can be lifted in a sufficiently coherent way to
the category of representations of an affine algebraic group, we can obtain an action on the
homotopy type, and in particular, on the homotopy groups. This approach is quite classical
in rational homotopy theory, and we explain in Section 6 how we can recover the mixed
Hodge structures on the homotopy types of algebraic varieties, as well as other motivic
structures. Integrally, this is less well-known, and we sketch a construction of a motivic
structure on the homotopy type of algebraic varieties in the final section.

Acknowledgements. I am grateful to Joana Cirici for reading a first draft of this paper. I
also thank my former master students Noé Sotto and Julio Pérez Garćıa, whose master’s
theses on these topics helped me refine my understanding.

Notations. For A an abelian category, we denote by DpAq the 8-categorical derived category.
We denote by Dď0pAq the full subcategory of coconnective objects (with homological grading
convention). We write S for the 8-category of spaces.

We denote by Map the mapping space in an 8-category. We usually do not write the
name of the 8-category unless there is a risk of ambiguity.

2. Preliminaries

2.1. Localization. Let R be a commutative ring. A space U is R-local if for any f : X Ñ Y
such that H˚pf, Rq is an isomorphism, the induced map

MappY, Uq Ñ MappX, Uq

is a weak equivalence. The 8-category of R-local spaces is stable under limits. Bousfield, in
[Bou75], has shown that there exists a left adjoint to the inclusion of R-local spaces in the
8-category of all spaces. We shall denote by X ÞÑ XR this left adjoint. In the particular
case of R “ Fp, we write Xp instead of XFp

. If X is simply connected and of finite type and
R is a subring of Q, then the map

X Ñ XR

induces the canonical map πipXq Ñ πipXq b R on homotopy groups and likewise, the map

X Ñ Xp

induces πipXq Ñ πipXq b Zp. In particular, Z-localization is equivalent to the identity
functor when restricted to simply connected homotopy types.

Remark 2.1. In the presence of fundamental group, the situation becomes much more subtle,
In particular, there exist acyclic spaces, i.e. non-contractible spaces whose integral homology
is the same as the integral homology of the point. The Z-localization of such a space is
contractible.
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2.2. Nilpotent spaces. The following class of spaces will play a key role in what follows.

Definition 2.2. A connected space X is nilpotent of finite type if
(1) Its fundamental group is nilpotent.
(2) The action of the fundamental group on higher homotopy groups is nilpotent.
(3) The integral homology is finitely generated in each degree.

What makes nilpotent finite type spaces useful is that they are built from Eilenberg-
MacLane spaces KpZ, nq with n ě 1 using limits of a very explicit form. It follows that
many theorems about them can be reduced to the case of Eilenberg-MacLane spaces. This
is formalized in Proposition 2.4 below.

Definition 2.3. A convergent tower is a tower of connected spaces

. . . Ñ Xn Ñ Xn´1 Ñ . . . Ñ X0

in which the connectivity of the fiber of Xi Ñ Xi´1 is a function of i that tends to infinity.

Proposition 2.4. Let F and G be two functors from the 8-category of nilpotent finite type
spaces to any 8-category with limits. Let α : F Ñ G be a natural transformation. Assume
that the following assumptions hold

(1) The functors F and G preserve finite products.
(2) The functors F and G preserve fiber sequences with simply connected base.
(3) The functors F and G preserve limits of convergent towers.
(4) The natural transformation α is a weak equivalence on Eilenberg-MacLane spaces

KpZ, nq with n ě 1.
Then α is a weak equivalence on any finite type nilpotent space.

3. Rational homotopy theory

In rational homotopy theory, we consider the functor of singular cochains

X ÞÑ C˚pX,Qq

from the 8-category of spaces to the category CAlgpDpQqqop. This functor is a left adjoint
and its right adjoint is given by

A ÞÑ MapCAlgpA,Qq

Theorem 3.1. [Sul77] The unit of the adjunction is rationalization for X nilpotent of finite
type.

Proof. Since the functor
X ÞÑ MappC˚pX,Qq,Qq

obviously inverts rational equivalences, the unit map can be factored as

X Ñ XQ Ñ MappC˚pX,Qq,Qq

We wish to prove that the map XQ Ñ MappC˚pXq,Qq is a weak equivalence for all nilpotent
spaces of finite type. For this, we may apply Proposition 2.4. The first three assumptions are
easily verified. Therefore, it suffices to prove the statement for X “ KpZ, nq. We consider
Fn, the free commutative algebra over Q generated by Qr´ns. We thus have

Fn “
à

kě0
Qr´knsΣk
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where the Σk action is the kn-th power of the sign representation. From this, it follows that
H˚pFnq – Qrxns

if n is even and
H˚pFnq – Qrxns{x2

n

if n is odd (with |xn| “ ´n). On the other hand, applying the Serre spectral sequence to
the fiber sequence

KpZ, nq Ñ ˚ Ñ KpZ, n ` 1q

and reasoning by induction on n, it is straightforward to prove that H˚pKpZ, nq,Qq is
abstractly isomorphic to H˚pFnq as a graded commutative algebra.

Now, observe that we have an isomorphism
HnpKpZ, nq,Qq – rKpZ, nq, KpQ, nqs – HomAbpZ,Qq

we can thus pick a class in HnpKpZ, nq,Qq corresponding to the canonical inclusion Z Ñ Q.
By universal property of the free commutative algebra construction, this induces a map of
commutative algebras

Fn Ñ C˚pKpZ, nq,Qq.

inducing an isomorphism in cohomological degree n. This together with the computation of
the cohomology of both sides implies that this map is a quasi-isomorphism. It follows that
there is a weak equivalence

MappC˚pKpZ, nq,Qq,Qq » MappFn,Qq » KpQ, nq

(the second equivalence comes form free forgetful adjunction between commutative algebras
and cochain complexes). Putting everything together, we deduce that the composite

KpZ, nq Ñ MappC˚pKpZ, nqq,Qq » KpQ, nq

is the canonical map and therefore, the induced map on rationalization is a weak equivalence
as desired. □

Remark 3.2. This theorem is only “one half” of Sullivan’s work in homotopy theory. The
other half is given by the theory of minimal models that makes rational homotopy theory
into a very computable theory. We will not say anything about that in these notes although
the theory of minimal models will play a role in the proof of Proposition 4.2. Let us also
mention that in [Sul77], Sullivan introduces another functor from spaces to commutative
algebras in DpQq called Ω˚

P L. It has the property that, at the point set level, it is given by a
strictly commutative differential graded algebra (as opposed to C˚p´,Qq which is merely an
E8-algebra). Nevertheless, the two functors are equivalent and Theorem 3.1 holds for both
functors.

4. The rational affinization of homotopy types

For R a commutative ring, we denote by AffR the category of affine schemes over R. To
avoid set theoretic problems, we implicitly restrict to the category of affine schemes whose
ring of functions has bounded cardinality so that the resulting category is essentially small.

Given a homotopy type X, we obtain a functor
A ÞÑ MappC˚pX,Qq, Aq

from the category of ordinary Q-algebras to the 8-category of spaces. Equivalently, this is a
presheaf on the category of affine schemes over Q. We denote it by Xaff

Q .
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Let R be a commutative ring. The additive group is simply the functor Affop
R Ñ S

sending SpecpBq to the abelian group B. This is an abelian group object in FunpAffop
Q , Sq

and therefore, it can be delooped arbitrarily. We denote by KpGa, iq its i-fold delooping.
Explicitly, it is given by

SpecpBq ÞÑ KpB, iq

Definition 4.1. [Toë06] Let R be a commutative ring. The 8-category of affine stacks over
R is the smallest full subcategory of FunpAffop

R , Sq that is stable under limits and containing
the stacks KpGa, iq for all i ě 0.

Proposition 4.2. If X is connnected and finite type, then Xaff
Q is an affine stack over Q.

Proof. This can be viewed from Sullivan’s theory of minimal models. For C a cochain
complex, we denote by SympCq the free commutative algebra on C. Observe that the stack
KpGa, nq is represented by SympQr´nsq.

The theory of minimal models asserts that the commutative algebra C˚pX,Qq can be
built as transfinite composition of pushouts of maps of the form Q Ñ SympQr´nsq and
SympQr´nsq Ñ Q. It follows that Xaff is the limit of a transfinite tower in which each map
is a pullback of pt Ñ KpGa, nq or KpGa, nq Ñ pt. □

5. Affine group actions on rational homotopy types

Let k be a field of characteristic zero. We denote by Spec the functor
Spec : CAlgpDď0pkqqop Ñ FunpAffop

k , Sq

sending A to S ÞÑ MapCAlgpDpkqqpA, Sq. Observe that, if A is an ordinary k-algebra, then the
functor SpecpAq takes values in discrete (i.e. 0-truncated) homotopy type, and coincides
with the ordinary spectrum functor in algebraic geometry.

Observe also that the functor Spec sends coproducts in the 8-category CAlgpDď0pkqq

to products. Moreover, coproducts in CAlgpDď0pkqq are simply given by tensor products.
It follows that if H is a cogroup object in CAlgpDď0pkqq then SpecpHq is a group object.
Likewise if A has a coaction of H, then SpecpAq has an action of SpecpHq.

Let G be an ordinary affine algebraic group over k. That is G “ SpecpHq with H a
commutative Hopf algebra over k. By taking the functor of points, G can be viewed as a
group object in FunpAffop

k , Setq and therefore also in the 8-category FunpAffop
k , Sq.

Now, denote by ReppGq the category of representations of G. This is simply the category
of comodules over the Hopf algebra H. Explicitly, a comodule is a k-vector space V equipped
with a coaction map

V Ñ V bk H

satisfying the expected coassociativity and counitality axioms. The fact that H is a Hopf
algebra and not merely a coalgebra implies that the category ReppGq admits a symmetric
monoidal structure. The tensor product of two objects M and N is simply the tensor product
M bk N equipped with the following structure map

M b N Ñ pM b Hq b pN b Hq – pM b Nq b pH b Hq Ñ pM b Nq b H

where the last map is induced by the multiplication map of H.
If A P CAlgpDď0pkqq admits a lift Ã in CAlgpDď0pReppGqqq, then Ã may be viewed as a

cocaction of H on A. It follows that SpecpAq has an action of the group G.
Let us specialize even further to k “ Q. Let X be an object of S. Assume that there is an

action of G on Xaff
Q in the 8-category FunpAffop

Q , Sq. According to the previous discussion,
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this can be equivalently seen as a lift of C˚pX,Qq to an object of CAlgpDď0pReppGqqq.
Assume further, the existence of a G fixed point on Xaff

Q , i.e. a G-equivariant map

x : SpecpQq Ñ Xaff

where SpecpQq is equipped with the trivial G-action. In this case, the rational homotopy
groups of X based at x obtain canonically the structure of G-representations. Explicitly,
given a Q-algebra R, a pointed homotopy class of maps α : Sn Ñ Xaff

Q pRq and an element
g P GpRq, we define g.α as the following composite:

Sn “ Sn ˆ ˚
idˆ1GpRq

ÝÝÝÝÝÝÑ Sn ˆ GpRq
αˆid

ÝÝÝÑ Xaff
Q pRq ˆ GpRq Ñ Xaff

Q pRq

6. Applications

6.1. Mixed Hodge structure. Let X be a complex algebraic variety and Xan be its
underlying complex analytic space. Then the commutative algebra C˚pXan,Qq can be
promoted to a commutative algebra in mixed Hodge structures as explained in [CH20,
Section 6]. This was also in Drew’s thesis ([Dre15], unpublished). The abelian category
of mixed Hodge structure is Tannakian and thus can be identified with the category of
finite dimensional representations of an affine group scheme G “ SpecpHq (see [DM82]). It
follows from the discussion of the previous section that the affine stack pXanqaff is naturally
equipped with an action of the group G. In particular, if x P Xan is a point, then the
homotopy groups of Xan based at that point can be promoted to mixed Hodge structures.
This structure has been first constructed by Morgan in [Mor78] in the case of smooth varieties
(see also [Nav87, Hai87, Cir15] for generalizations of this construction).

6.2. Motivic structure. Likewise, let k Ă C be a field. We can endow homotopy type of
algebraic varieties with a motivic structure. For this, it suffices to find a factorization of the
Betti realization functor as

Varop
k Ñ CAlgpDpReppGmotqqq Ñ CAlgpDpQqq

wher Gmot is some motivic Galois group.
There are several ways of making this precise. Historically, the first construction of this

type where restricted to mixed Tate motives. In this case, there is an affine group scheme
GMT M and a factorization as above but we need to restrict to varieties whose motives is
mixed Tate (i.e. in the smallest triangulated category of the category of motives containing
the Tate twists). This kind of construction is described in [Del89] or [DG05].

Alternatively, one can use the motivic Galois group of Nori GN
mot “ SpecpHN q (whose

construction is recalled in [HMS17]). The required factorization can be found in [CGAdS17].
We also refer to [Gar06] that proves a similar result using a different approach. Finally, if
one is willing to use a motivic Galois group which is derived (i.e. represented by a derived
affine group scheme), then there is a canonical factorization as above through representations
of Ayoub’s motivic Galois group GA

mot “ SpecpHAq (defined in [Ayo14]) with HA a dg-Hopf
algebra. Such a construction can be found in [Iwa20]. Note also that the two constructions
are related as HN “ H0pHAq by the main result of [CGAdS17].

7. Mandell and Toën’s theorem

If we move from rational to integral homotopy theory, the functor X ÞÑ C˚pX,Zq with
values in CAlgpDď0pZqq is no longer fully faithful. Nevertheless, thanks to a famous theorem
of Mandell, this functor knows everything about nilpotent finite type homotopy types. In
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order to state this theorem we introduce the finite loop space Λf X of a space X which is
defined so that the following square is cartesian

Λf X

��

// ś
p ΛXp

��
XQ // p

ś

p XpqQ

In this diagram Λ denotes the free loop space functor: ΛU :“ MappS1, Uq. The right vertical
map is the composite

ź

p

ΛXp Ñ
ź

p

Xp Ñ p
ź

p

XpqQ

where the first map is evaluation of a loop at a chosen base point and the second map is
rationalization.

Observe that, for X nilpotent and of finite type, this diagram can be embedded in
Sullivan’s arithmetic square as follows

X

��

// ś
p Xp

cst

��
Λf X

��

// ś
p ΛXp

��
XQ // p

ś

p XpqQ

where cst denotes the inclusion of the constant loops in the free loop space. In particular,
there is a canonical map X Ñ Λf X.

Theorem 7.1. [Man06] The functor X ÞÑ C˚pX,Zq from Sop to CAlgpDď0pZqq is a left
adjoint, the unit of this adjunction is the canonical map

X Ñ Λf X

when X is nilpotent and of finite type.

Proof. The proof starts by studying the unit map

X Ñ MapCAlgpDpFpqqpC˚pX,Fpq,Fpq.

Mandell shows that this map is a p-completion for nilpotent finite type spaces. This is an
application of Proposition 2.4 and an explicit description of C˚pKpZ, nq,Fpq. It follows that
the unit map

X Ñ MapCAlgpDpFpqqpC˚pX,Fpq,Fpq

can be identified with X Ñ XF rob
p where XF rob

p is the fixed point space for the action of
the Frobenius. It is not hard to check that this action must be trivial so that XF rob

p » ΛXp.
Then Mandell shows that the canonical map

MapCAlgpDpZpqqpC˚pX,Zpq,Zpq Ñ MapCAlgpDpFpqqpC˚pX,Fpq,Fpq

is an equivalence for X nilpotent and of finite type. This can be viewed again as an application
of Proposition 2.4 which reduces it to the case of X “ KpZ, nq.
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Finally, one uses the fact that the square

Z

��

// ś
p Zp

��
Q // p

ś

p Zpq b Q

is cartesian in the category CAlgpDpZqq. Mapping C˚pX,Zq into this square we get the
desired result. □

Remark 7.2. This theorem implies that the functor C˚p´,Zq is quite far from being fully-
faithful. For example rS2, S2s – Z while rC˚pS2,Zq, C˚pS2,Zqs – Z ‘

ś

p Zp.

One important corollary of Mandell’s theorem is the following.

Theorem 7.3. Let X and Y be nilpotent of finite type. Then X is weakly equivalent to Y if
and only if C˚pX,Zq is weakly equivalent to C˚pX,Zq in CAlgpDď0pZqq.

Proof. A nilpotent finite type space fits in a cartesian square of the following form

X

��

// ś
p Xp

��
XQ // p

ś

p XpqQ.

From this it follows easily that there exists a map Λf X Ñ X such that the composed map

X Ñ Λf X Ñ X

is homotopic to the identity. □

Toën has shown that a similar theorem holds in a more rigid category. For X a simplicial
set, we write ZX the cosimplicial commutative ring given by ZXk in cosimplicial degree k. If
we invert the weak equivalences of simplicial sets and the quasi-isomorphisms of cosimplicial
rings, this induces a functor from the 8-category Sop to the 8-category cCRing obtained
from the 1-category of cosimplicial commutative rings by inverting quasi-isomorphisms.

Theorem 7.4. [Toë20] The functor X ÞÑ ZX is a left adjoint. The unit of this adjunction
is the map

X Ñ Λf X

for X nilpotent and of finite type. Moreover two nilpotent finite type spaces X and Y are
weakly equivalent if and only of ZX and ZY are weakly equivalent as cosimplicial commutative
rings.

From an 8-categorical perspective, the category cCRing may seem a bit ad hoc. In fact
Toën observe that the 8-category cCRing is equivalent to the 8-category of affine stacks
(Definition 4.1) over Z through the spectrum functor:

A‚ ÞÑ pB ÞÑ MapcCRingpA‚, Bqq

where B is viewed as a constant cosimplicial commutative ring. In particular, Toën defines the
affinization of a homotopy type X denoted Xaff to be the affine stack over Z corresponding
to ZX through the above equivalence. We sum-up Toën’s work in the following Theorem.
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Theorem 7.5. [Toë20] Let X be a nilpotent space of finite type. Then Xaff is an affine
stack with the following properties.

‚ Its space of Q-points is XQ.
‚ Its space of Fp-points is Xp.
‚ Its space of Fp-points is ΛXp.
‚ Its space of Z-points is Λf X.

8. Binomial rings and homotopy theory

Recall that, if R is a commutative ring, r is an element of R and n P N, the generalized
binomial coefficient

`

r
n

˘

is defined by
ˆ

r

n

˙

:“ rpr ´ 1q . . . pr ´ n ` 1q

n!
It is an element of R b Q.

Definition 8.1. A binomial ring is a commutative ring R whose underlying abelian group
is torsion free and which is such that, for all r P R and n P N, the generalized binomial
coefficient

`

r
n

˘

belongs to R.

Remark 8.2. It is often useful to know the following alternative characterization. A binomial
ring is a torsion-free commutative ring R in which, for every element r P R and every prime
p, the number p divides rp ´ r. See [Ell06, Theorem 4.1].

Example 8.3. Any subring of the rationals (in particular Z) is binomial. Any Q-algebra is a
binomial. The ring Zp of p-adic integers is binomial for any p.

As a last example, consider the ring Numrx1, . . . , xns Ă Qrx1, . . . , xns of numerical
polynomials in n variables. Recall that a numerical polynomial is a polynomial with rational
coefficients which takes integer values when evaluated on integers. It can be shown that this
ring is binomial. This is in fact the free binomial ring on n generators.

The category of binomial rings is a full subcategory of the category of commutative rings.
It is in fact monadic and comonadic over the category of commutative rings. In particular,
binomial rings are stable under limits and colimits inside commutative rings. It follows
that, if R is a binomial and X is a simplicial set, the cosimplicial commutative ring RX is
a cosimplicial binomial ring. Let us denote by cBRing the 8-category obtained form the
1-category of cosimplicial binomial rings by inverting quasi-isomorphisms.

Theorem 8.4. [Hor24] The functor X ÞÑ RX induces a left adjoint functor from the 8-
category S to the 8-category cBRingop. The unit of this adjunction is homotopic to the
identity map X Ñ X for X nilpotent of finite type. If X is finite type, the unit is given by
the map X Ñ Z8X to the Bousfield-Kan Z-completion.

Proof. The proof again is based on Proposition 2.4. We are essentially reduced to proving
that ZKpZ,nq is quasi-isomorphic as a cosimplicial binomial ring to Fn :“ BinpZr´nsq, the
free cosimplicial binomial ring on a class of degree ´n. This is done by Toën in [Toë20]. In
[Hor24], we give a different proof based on a reduction to the case n “ 1 which is then a
standard homological algebra calculation. □

Let Gbin
a denote the functor from BRing to Ab sending B to the underlying abelian group

of B. Similarly to Toën, we can make the following definition.
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Definition 8.5. The category of affine binomials stacks is the smallest full subcategory of
FunpBRing, Sq that is stable under small limits and contains KpGbin

a , iq for all i ě 0.

Theorem 8.6. The assignment X ÞÑ Xbin is a fully faithful functor from the 8-category of
nilpotent finite type spaces to the 8-categeory of binomial stacks. Moreover, for X nilpotent
and of finite type. We have

‚ The space of Z-points of Xbin is X.
‚ For R a subring of Q, the space of R-points of Xbin is XR.
‚ The space of Zp-points of X is Xp.

Remark 8.7. We conclude this section with some review of the literature on algebraic models
for integral homotopy types. First of all, there exists three versions of Theorem 8.4. One
due to the author which is the one stated in this document, one due to Antieau (see [Ant23])
and one due to Kubrak-Shuklin-Zakharov (see [KSZ23]). In spirit these three theorems
are saying the same thing but their target category are different. In [KSZ23], the target
category is the 8-category of coconnective derived binomial rings, in [Ant23], the target is
coconnective derived lambda-rings with the data of a trivialization of the Frobenius lift. It
is very believable that these three 8-categories are equivalent although no proof seems to
exist at the moment.

In a different direction, if one is willing to work over the sphere spectrum rather than the
integers, there is a model due to Yuan that takes values in commutative ring spectra with
trivialization of the Frobenii (see [Yua23]). There is also a model due to to Heuts in terms
of Tate coalgebras (see [Heu21]). The definition of Tate coalgebras is inductive and not so
easy to grasp but the advantage of working coalgebraically is that one can get rid of the
finite type assumption. In this direction, we should mention the recent preprint [BB24] of
Bachman and Burklund that proves a p-adic version of Mandell’s theorem using coalgebras.
This allows them to remove the finite type hypothesis.

9. The problem of schematization

This idea originates in Grothendieck’s “Pursuing stacks” [Gro83]. Grothendieck conjectures
that, to a homotopy type X, there should be an associated schematization Xsch which would
be a (higher) stack with the following list of properties.

(1) Its space of Z-points is the underlying homotopy type of X.
(2) The homotopy groups of the R points should be naturally an R-module.
(3) Its space of R-points is the R-completion/localization for reasonable rings R.
(4) The cohomology of X should coincide with the of Xsch with coeffients in Ga.
(5) If X “ KpZ, nq, then Xsch should be KpGa, nq.

Of course the knowledgeable reader will observe that these requirements are contradictory. In-
deed the p-completion of KpZ, nq is KpZp, nq and not KpFp, nq. Nevertheless Grothendieck’s
idea was to take item (5) for a fact and construct the required object in general using
“Postnikov dévissage”. This dream was put to an end after a phone call to Illusie in which
Grothendieck learned about the work of Breen on extensions of the additive group (see
[Bre78]). The problem one has to deal with is that there are no non-trivial central extensions
of Z by itself (in other words H2pZ,Zq “ 0) whereas there are non-trivial central extensions
of Ga by itself. One of them is given by the truncated Witt vectors W2.

Grothendieck then goes on to propose a way to fix of his idea. Instead of paraphrasing,
let us just cite him:
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This example brings near one plausible “reason” why the expected comparison
statement about discrete and schematic linearization could not reasonably hold
true, and in particular why we shouldn’t expect discrete and schematic Hochschild
cohomology (for group schemes over Z such as Ga or successive extensions of
such) to give the same result. Namely, the latter is computed in terms of
cochains which are polynomial functions with coefficients in Z, whereas there
exist polynomial functions with coefficients in Q (not in Z) which, however,
give rise to integer-valued functions on the group of integer-valued points (...)
Thus, the hope still remains that a sweeping comparison theorem for discrete
versus “schematic” linearization might hold true, provided it is expressed in
such a way that the “schematic models” we are working with should be built
up with “schemes” (of sorts) described in terms of spectra not of polynomial
algebras Zrts and tensor powers of these, but rather of “binomial algebras” Zxty
built up with the binomial expressions above, and tensor powers of such.

As we have explained in section 7, Toën in [Toë06, Toë20], constructs what he calls the
affinization of homotopy type. This construction can be viewed as the best possible approxi-
mation to what Grothendieck has in mind that remains within the world of classical algebraic
geometry. Our construction Xbin is meant to be a precise version of what Grothendieck
suggests in the citation above.

10. Motivic structure on the integral homotopy type of algebraic varieties

Let k Ă C. Recall from [CGAdS17], that there exists an affine algebraic group over
the integer GN

motpkq “ SpecpHN pkqq with HN pkq a commutative Hopf algebra whose
representations are exactly Nori motives. The key observation is the following.

Proposition 10.1. The underlying commutative ring of HN pkq is a binomial ring.

Proof. First of all HN pkq is flat so it is in particular torsion free. Moreover, it can be shown
that HN pkq b Fp is the ring of continuous functions on the absolute Galois group of k:

HN pkq b Fp – C0pGalpk{kq,Fpq

which immediately implies what we need, thanks to Remark 8.2. □

Conjecture 10.2. Let X be a smooth algebraic variety over k. Let X P S be the Betti
realization of X. Then Xbin is naturally equipped with an action of Gmotpkq with the following
properties

(1) After base change to Q this action specializes to the classical motivic structure on
the rational homotopy type from subsection 6.2.

(2) After base change to Zp, this action recovers the Galois action on the p-complete
homotopy type

Let us sketch how this conjecture can be proved. We have a cartesian square in cBRing
given by

ZX

��

// ẐX

��
QX // pQ b ẐqX

where Z “
ś

p Zp is the profinite completion of the ring of integers. We shall construct the
required action on ZX by gluing together an action on the other three corners of the square.
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First of all the cosimplicial binomial ring ZX
p can be given an action of Galpk{kq. Indeed,

by Artin’s comparision theorem, ZX
p is quasi-isomorphic to pro-étale sheaf cohomology of

X ˆk k with coefficients in Zp. In particular, this can be constructed as a limit of a diagram
of cosimplicial binomial rings. Taking the product over all primes, this should give the
desired action on the top right corner. On the other hand, we have seen in subsection 6.2
how to construct an action of GN

motpkq ˆZ Q on Xbin ˆZ Q. Finally one should check that
the two structures are compatible on the bottom right corner through the canonical map of
Hopf algebras

HN pkq bZ Qp Ñ C0pGalpk{kq,Qpq
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