
AUTOMORPHISMS OF FRAMED OPERADS

GEOFFROY HOREL AND THOMAS WILLWACHER

Abstract. Let P be an operad acted upon by a group G, and let Q = P ⋊G be the corresponding framed operad. We
relate the homotopy automorphism groups of P and Q. We apply the result to compute the automorphisms of the framed
little disks operad.

1. Introduction

Let P be a (topological or simplicial) operad acted upon by a (topological or simplicial) group G. Then the
G-framed operad P ⋊G is defined such that

P ⋊G(r) = P(r) ×G×r

with the composition operations
(1)

◦ : P ⋊G(r) × P ⋊G(s1) × · · ·P ⋊G(sr)→ P ⋊G(s1 + · · · + sr)(
(p, g1, . . . , gr) × (q1, h11, . . . , h1s1 ), . . . , (qr, hr1, . . . , hrsr )

)
= (p ◦ (g1 · q1, . . . , gr · qr), g1h11, . . . , g1h1s1 , g2h21, . . . , grhrsr ).

A P ⋊G-algebra in spaces is the data of a G-space X equipped with a P-algebra structure that is G-equivariant in
the sense that the structure maps

P(n) × Xn → X

are G-equivariant, when the source is given its diagonal G-action. More generally, this construction is left adjoint
to the forgetful functor from operads under G to operads in G-spaces (see Lemma 2.2).

The classical and motivating example of this construction is the little disks operads P = D2 that is acted upon
by the group G = SO(2), with D2 ⋊SO(2) =: fD2 the framed little disks operad and its higher dimensional variants
fDn = Dn ⋊ SO(n).

Generally, one may hence associate four automorphism spaces to a G-operad P: The (homotopy) automor-
phism space Auth

Op(P) of P as an ordinary operad, or as a G-operad AuthGOp(P), or the homotopy automorphisms
Auth

Pair((G,P)) of the pair (G,P) consisting of the group G and the operad P , or one may consider the auto-
morphisms of the framed operad Auth

Op(P ⋊G). The purpose of the present paper is a comparison of these four
automorphism spaces. To this end we have the following result.

Theorem 1.1. Let P be (topological or simplicial) operad acted upon by a (topological or simplicial) group G
such that P(0) = ∗, P(1) is contractible, and let Q = P ⋊G be the corresponding framed operad. Then the
following holds.

a. The (derived) morphism of simplicial monoids

Auth
Pair((G,P))→ Auth

Op(Q)

induced by the functoriality of the semi-direct product construction ⋊ is a weak equivalence. In particular,
there is a homotopy fiber sequence of simplicial monoids

(2) AuthGOp(P)→ Auth
Op(Q)→ AuthMon(G).

b. Let f : G → Auth
OpP be the map defining the G-action on P . Then the classifying space BAuthGOp(P) is

weakly equivalent to the connected component corresponding to f of the unbased mapping space between
the classifying spaces of G and Auth

Op(P)

BAuthGOp(P) ≃ Map
(
BG, BAuth

Op(P)
)

B f
.

We apply the above result to the (framed) little disks operad and its rationalization. The homotopy automor-
phisms of D2 have been computed by the first author, building on earlier work by Drinfeld [8].

G.H. has been partially supported by the Agence Nationale pour la recherche, project number ANR-20-CE40-0016 HighAGT. T.W. has
been partially supported by the NCCR Swissmap, funded by the Swiss National Science Foundation.
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Theorem 1.2 (Horel [15, Theorem 8.5]). There is a weak equivalence of simplicial monoids

AuthΛOp(D2) � O(2).

The homotopy automorphism space of the Bousfield-Kan rationalization of the little disks operad has been
computed by B. Fresse.

Theorem 1.3 (Fresse [10, Theorem A in part III] ). There is a weak equivalence of simplicial monoids

Auth
Op(DQ

2 ) � GRT ⋉ SO(2)Q,

with GRT the Grothendieck-Teichmüller group.

Using Theorem 1.1 above, we then obtain the following.

Theorem 1.4. There are weak equivalences of simplicial monoids

AuthSO(2)Op(D2) � SO(2)

Auth
Op(fD2) � O(2).

Theorem 1.5. There are weak equivalences of simplicial monoids

AuthSO(2)QOp(DQ
2 ) � GRT1 ⋉ SO(2)Q

Auth
Op(fDQ

2 ) � GRT ⋉ SO(2)Q.

with GRT1 the pro-unipotent Grothendieck-Teichmüller group and GRT = Q× ⋉ GRT1, see [1, 8].

There is also a version of this theorem for the profinite completion of fD2 recovering the main result of [6] and
giving a computation of the fundamental group of the group of homotopy automorphisms of f̂D2 which was not
done in [6]. In order to phrase this result we have to address the technicality that the profinite completion functor
does not preserve products in general. The way to deal with this, introduced in [15], is to use the category of
weak operads (denotedWOp). This category is the category of functors from the algebraic theory of operads that
preserve products up to homotopy. Our theorem in this setting gives the following.

Theorem 1.6. There are weak equivalences of simplicial monoids

Auth
|ŜO(2)|WOp

(D̂2) � ĜT1 ⋉ ŜO(2)

Auth
WOp(f̂D2) � ĜT ⋉ ŜO(2).

with ĜT the pro-finite Grothendieck-Teichmüller group and ĜT1, the kernel of the cyclotomic character ĜT→ Ẑ×.
See [8].

We emphasize that the version of the little disks operad that we use has an operation in arity zero, i.e., D(0) = ∗.
Composition with this element is the same as forgetting disks from a configuration. However, there are also similar
results for the non-unital version (see Theorems 4.3 and 4.4).

2. Model categories, functors and adjunctions

2.1. Model category structures. Fix a simplicial group G. We consider the following categories:

• The category sSet of simplicial sets and Seq of symmetric sequences in simplicial sets.
• The category of simplicial operads Op. Our operads may have nullary operations.
• The categoryMon of monoids in simplicial sets. This can also be understood as the subcategoryMon ⊂ Op

of operads with only unary operations, by considering a monoid M as an operad such that

(3) M(r) =

M for r = 1
∅ otherwise

.

This also allows us to consider the under-category OpG/.
• The category of operads with a G-action GOp.
• The category Pair of pairs (G,P) consisting of a simplicial group G and a G-operad P . The morphisms

(G,P)→ (H,Q) are pairs (ϕ, F) consisting of a morphism of simplicial groups ϕ : G → H and a morphism
of G-operads F : P → ϕ∗Q .

2



We equip sSet with the standard Quillen model structure, and the other categories above with cofibrantly
generated model structures by transfer along the forgetful functors

GOp→ Op→ Seq→
∏
r≥0

sSet Pair → sSet ×
∏
r≥0

sSet.

Concretely, this means that in each case the weak equivalences (resp. fibrations) are arity and/or objectwise weak
equivalences (resp. fibrations) of simplicial sets. The cofibrations are those morphisms that have the left-lifting
property with respect to acyclic fibrations. The generating (acyclic) cofibrations are the images of the generating
cofibrations in sSet under the respective free object functors.

Proposition 2.1 (Berger-Moerdijk). The above classes of distinguished morphisms define cofibrantly generated
model category structures on the categories Op,Mon, GOp, Pair.

Proof. For the case of Op this is [2, Theorem 3.2] (see also section 3.3.1 in that paper). For the other cases the
proof is identical, one just replaces ”operad” by monoid, G-operad or pair. Alternatively, the proposition is a
special case of [3, Theorem 2.1], since the above types of algebraic objects are all algebras over suitable colored
operads. □ ...”group” is not...

We call the resulting model category structures the projective model category structures. The under-category
OpG/ can then simply be equipped with the slice model structure. This means that a morphism is a weak equiv-
alence (resp. fibration, cofibration) iff it is a weak equivalence (resp. fibration, cofibration) in the underlying
category Op.

2.2. Functors and adjunctions. The semidirect product functor

⋊ : Pair → Op

associates to a pair (G,P) of a simplicial group G and an operad P with a G-action the operad P ⋊G such that

(P ⋊G)(r) = P(r) ×G×r.

The compositions are defined via (1). The operad P ⋊G comes with a natural action of G, and a natural map
G → P ⋊G.

Lemma 2.2. We have a Quillen adjunction

(−) ⋊G : GOp⇄ OpG/ : ι,

with ι the forgetful map from operads under G to operads with a G-action.

Proof. To check the adjunction relation

MorGOp(P , ιQ) � MorOpG/ (P ⋊G,Q)

note that P ⋊G is generated by P and G, with relations those in P and G and additionally the relations

g ◦ p ◦ (g−1, . . . , g−1) = g · p.

This implies that an operad map from P ⋊G that is fixed on G is the same as a map from P that respects the
G-action. It is also clear that ι preserves weak equivalences and fibrations, since they are created in Seq, and is
hence right Quillen. □

Lemma 2.3. We have a Quillen adjunction

i : Mon⇄ Op: (−)(1),

where the left adjoint i is the inclusion of monoids into operads, see (3), and the right adjoint associates to the
operad P the monoid P(1).

The adjunction counit
P(1)→ P

is a cofibration in Op for any cofibrant operad P .

The Lemma seems to be known to experts, but we failed to find a citeable reference.

Proof sketch. The adjunction relation is again (fairly) obvious and left to the reader. It is clearly a Quillen adjunc-
tion since the right adjoint preserves weak equivalences and fibrations, which are such morphisms arity-wise on
the level of simplicial sets.

For the last assertion let X be the class of all operads P such that the adjunction counit P(1) → P is a
cofibration. Then one checks that X is closed under retracts and filtered colimits. It also contains all free objects,
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in particular domains and targets of the generating (acyclic) cofibrations. One also checks that X is closed under
pushouts along cofibrations between objects in X.

But by [17, Proposition 2.1.18] any cofibrant object in a cofibrantly generated model category is a retract of a
cell complex, i.e., a colimit along a transfinite composition ∗ → · · · → Xn → Xn+1 → · · · of morphisms that are
each pushouts along generating cofibrations. Hence, by transfinite induction, we have that each object Xn and thus
the colimit is in X. □

2.3. Lambda operads and Reedy model structure. Let Op∗ ⊂ Op be the full subcategory of operads P such
that P(∗) = ∗. Let Λ be the category with objects the non-negative integers, and morphisms m → n the injective
(not necessarily order preserving) maps

{1, . . . ,m} → {1, . . . , n}.
We have a forgetful functor

F : Op∗ → ΛsSet := sSetΛ
op
,

that sends an operad P to the (positive arity part of the) underlying symmetric sequence, equipped with the
operations of operadic composition with ∗. The category Λ is a generalized Reedy category and hence ΛsSet is
equipped with the Reedy model structure, see [10, Theorem 8.3.19].

Following Fresse [10, 11] we define the Reedy model structure on Op∗ to be the one obtained by right transfer
along F from the Reedy model structure on ΛsSet.

Lemma 2.4. There is a Quillen adjunction with respect to the Reedy model structure on Op∗
(−)(1) : Op∗ ⇄Mon: Com ⋊ (−)

with the left-adjoint being the forgetful functor that takes the unary part P(1) of an operad P .

Proof. One easily verifies the adjunction relation.
To check that the adjunction is Quillen, note that we have a commutative diagram

Op∗ Mon

ΛsSet sSet

Com⋊(−)

Fc
Λ

with Fc
Λ

the cofree Λ object, defined such that

Fc
Λ(X)(r) = X×r.

All arrows in the diagram are right adjoints. The model structures of the categories in the upper row are defined by
transfer along the vertical forgetful functors. It follows that Com ⋊ (−) is right Quillen if Fc

Λ
is right Quillen. But

this follows if its left adjoint (forgetful) functor ΛsSet → sSet is left Quillen. But by [10, Theorem II.8.3.20] the
(acyclic) cofibrations in ΛsSet are the morphisms that are (acyclic) cofibrations in Seq. In particular the arity one
part of a symmetric sequence is just a simplicial set, and hence the forgetful functor does indeed preserve (acyclic)
cofibrations. □

We will need below the following corollary.

Corollary 2.5. Let P ∈ Op∗ be an operad such that P(1) ≃ ∗ and let G be a simplicial monoid. Then we have that

(4) Maph
Op(P ,Com ⋊G) ≃ ∗.

Proof. By [12, Theorem 1] the inclusion Op∗ ⊂ Op is homotopically fully faithful, so that

Maph
Op(P ,Com ⋊G) ≃ Maph

Op∗ (P ,Com ⋊G).

The Corollary then follows immediately from the Quillen adjunction of Lemma 2.4.
□

3. Proof of Theorem 1.1

3.1. Two fibration lemmas.

Lemma 3.1. Let P ,Q ∈ Op be operads such that P is cofibrant and Q is fibrant. Then the restriction map to the
unary part

(5) MapOp(P ,Q)→ MapMon(P(1),Q(1))

is a fibration. The fiber over a morphism f : P(1)→ Q(1) is MapOpP(1)/ (P ,Q), where Q is made an operad under
P(1) via f .
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Proof. The inclusion P(1) → P is a cofibration by Lemma 2.3. By the adjunction of that Lemma we also have
that

MapMon(P(1),Q(1)) = MapOp(P(1),Q).
Furthermore, the morphism (5) of the Proposition is obtained by precomposition with the map P(1) → P .
But because that map is a cofibration we know that (5) is a fibration. The fiber over the identity is evidently
MapOpP(1)/ (P ,Q). □

Lemma 3.2. Let P ,Q ∈ GOp be G-operads such that P is cofibrant and Q is fibrant. Also suppose G is fibrant.
Then the map

(6) MapGOp(P ,Q ⋊G)→ MapGOp(P ,Com ⋊G)

obtained by composition with the canonical G-operad morphism Q ⋊G → Com ⋊G is a fibration with fiber

MapGOp(P ,Q).

Proof. It suffices to check that the morphism Q ⋊G → Com ⋊ G is a fibration. But by definition of the model
structure this means that in each arity r the morphism

(Q ⋊G)(r) = Q(r) ×G×r → (Com ⋊G)(r) = G×r

is an sSet-fibration. But the morphism is a product of two fibrations, namely the map Q(r)→ ∗ (by fibrancy of Q)
and the identity on the factor G×r, and hence itself a fibration. Again, the identification of the fiber is obvious. □

3.2. Proof of the first part of Theorem 1.1.

Lemma 3.3. The sequence (2) is a homotopy fiber sequence of simplicial sets.

Proof. Let Q̂ be a fibrant and cofibrant replacement of Q := P ⋊G. Then we have that

Auth
Op(Q) := Map′

Op(Q̂ , Q̂),

where ′ indicates that we take the subspace consisting of the connected components of homotopy invertible mor-
phisms. Applying Lemma 3.1 we obtain a fibration

(7) Map′
Op(Q̂ , Q̂)→ Map′

Mon(Q̂(1), Q̂(1)).

Since Ĝ := Q̂(1) is a fibrant and cofibrant replacement for G = Q(1), the right-hand side above is

Map′
Mon(Q̂(1), Q̂(1)) =: Auth

Mon(G).

On the other hand, the fiber of (7) over the identity (and hence over any other point as well) is

ÃutOpĜ/ (Q̂) := Map′
OpĜ/ (Q̂ , Q̂).

Let P̂ be a cofibrant replacement of P in the category ĜOp. Then we have that Ĝ → P̂ ⋊ Ĝ is a cofibrant object of
OpĜ/ by the Quillen adjunction of Lemma 2.2. It is also weakly equivalent to Q . Hence

Map′
OpĜ/ (Q̂ , Q̂) ≃ Map′

OpĜ/ (P̂ ⋊ Ĝ, Q̂) � Map′
ĜOp

(P̂ , Q̂),

where in the last step we again used the adjunction of Lemma 2.2.
Next we apply Lemma 3.2 to see that Map′

ĜOp
(P̂ , Q̂) fits into a homotopy fiber sequence

Map′
ĜOp(P̂ , P̂)→ Map′

ĜOp(P̂ , Q̂)→ MapĜOp(P̂ ,Com ⋊G).

Since the base is contractible by Corollary 2.5 we know that indeed Map′
ĜOp

(P̂ , P̂) ≃ Map′
ĜOp

(P̂ , Q̂). We conclude
that

ÃutĜOp(P̂) ≃ ÃutOpĜ/ (Q̂)

as desired. Finally, the categories ĜOp and GOp are Quillen equivalent (see, e.g., [9, Theorem 16.A]), and hence
we have ÃutĜOp(P̂) = Auth

ĜOp
(P̂) ≃ AuthGOp(P). □

Now we continue with the proof of the first part of Theorem 1.1. We have a homotopy commutative diagram

AuthGOp(P) Auth
Pair((G,P)) Auth

Mon(G)

AuthGOp(P) Auth
Op(P ⋊G) Auth

Mon(G).

= =
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The top and bottom row are homotopy fiber sequences, due to Lemma 3.3. Hence from the associated diagram of
long exact sequences of homotopy groups we conclude that Auth

Pair((G,P)) ≃ Auth
Op(P ⋊G) as simplicial monoids.

3.3. Proof of the second part of Theorem 1.1. The second assertion of Theorem 1.1 is a special case of the
following general result on∞-categories.

Proposition 3.4. Let C be an ∞-category. Let G be a grouplike E1-space and X an object CBG. Let f : BG →
BAutC(X) be the map giving X its action of G, then there is a weak equivalence

BAutCBG (X) ≃ Map(BG, BAutC(X)) f

where the f subscript notation denotes the connected component of the mapping space containing the map f .

Proof. For an ∞-category C, we denote by C≃ the maximal ∞-groupoid contained in C. The functor C 7→ C≃ is
right adjoint to the inclusion functor from∞-groupoids to∞-categories. From this universal property, we see that
there is an equivalence of∞-groupoids

(CBG)≃ ≃ (C≃)BG

restricting this equivalence to the connected component of X, we get exactly the desired equivalence. □

Now every simplicial model category M determines an ∞-category that we denote by M∞. The morphism
spaces in the ∞-category are weakly equivalent to the derived mapping spaces of the model category, see [18,
Theorem 4.6.8.5]. Moreover, if G is a grouplike simplicial monoid, there is an equivalence of infinity-categories

(Op)BG
∞ ≃ (GOp)∞

by [19, Proposition 4.2.4.4] We may hence apply the above proposition also to the category Op and obtain that

BAuthGOp(P) ≃ Maph
sSet

(
BG, BAuth

Op(P)
)

B f

as desired. This concludes the proof of the second part of theorem 1.1. □

4. Application to the framed little n-disks operads

The goal of this section is to show Theorems 1.4, 1.5 and 1.6.

4.1. Proof of Theorem 1.4. Thanks to the first part of Theorem 1.1, we have a fiber sequence

Aut
OpBS 1 (D2)→ AutOp(fD2)→ AutMon(SO(2))

The group Auth
Mon(SO(2)) is identified with the group of homotopy automorphisms of BSO(2) ≃ CP∞ in the

category of based spaces. Since CP∞ is a K(Z, 2), we have

πiMap∗(CP∞,CP∞) ≃ H̃2−i(CP∞; Z)

It follows that Auth
Mon(SO(2)) is the discrete group Z/2.

By the second part of Theorem 1.1 and Theorem 1.2, we have

BAutSO(2)Op(D2) ≃ Map(BS 1, BO(2)) f

with f : SO(2) → O(2) ≃ Auth
Op(D2) the action map. This map f can be identified with the inclusion SO(2) →

O(2). Since SO(2) is connected, we have

Map(BSO(2), BO(2)) f ≃ Map(BSO(2), BSO(2))id

and this last mapping space can be computed similarly to what we just did. In the end, we find

AutSO(2)Op(D2) ≃ SO(2)

so that we have a fiber sequence
SO(2)→ AuthOp(fD2)→ Z/2

But we have an action of O(2) on fD2 that fits into a map of fiber sequences

SO(2) O(2) Z/2

SO(2) Auth
Op(fD2) Z/2

= =

from which we conclude that Auth
Op(fD2) ≃ O(2) as desired. □
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4.2. Dg Lie algebras and rational homotopy theory. For g a filtered complete dg Lie algebra we consider the
Maurer-Cartan space

MC•(g) = MC(g ⊗̂Ω(∆•))
and the exponential group

Exp•(g) = Z(g ⊗̂Ω(∆•))
with Z(−) taking the degree zero cocycles. It is known [5, Theorem 5.2] that

BExp•(g
α) ≃ MC•(g)α

where α ∈ MC(g) is a Maurer-Cartan element.
We also recall the Quillen adjunction of rational homotopy theory

(8) Ω : sSet ⇄ dgcaop : G,

with dgca the category of dg commutative algebras, Ω = MorsSet(−,Ω(∆•)) the PL differential forms functor and
G = Mordgca(−,Ω(∆•)) the geometric realization functor.

4.3. Proof of Theorem 1.5. We follow the proof of Theorem 1.4 above. We first conduct several preparatory
computations. First, since BSO(2)Q is a K(Q, 2),

πiAuth
Mon(SO(2)Q) = πiMap∗(BSO(2)Q, BSO(2)Q) = H̃2−i((CP∞)Q,Q) =

Q for i = 0
0 otherwise

.

For the last equality we either use Hurewicz’ Theorem or the fact that CP∞ is Q-good, that is, H((CP∞)Q,Q) =
H(CP∞,Q). We hence conclude that

Auth
Mon(SO(2)Q) ≃ Q.

Similarly, We compute that
Map∗(BSO(2)Q, BQ×) ≃ ∗

is weakly contractible. For the unbased mapping space it hence follows that

(9) Map(BSO(2)Q, BQ×) ≃ Q×.

Next let grt1 be the (complete) Grothendieck-Teichmüller Lie algebra such that GRT1 = Exp•(grt1). The Lie
algebra grt1 has a complete weight-grading, and the pieces grWgrt1 of fixed weight are finite-dimensional. We
define the Lie coalgebra

grt
c
1 :=
⊕

W

(grWgrt1)∗.

We also define the abelian graded Lie algebra g := Qe, with the generator e concentrated in cohomological degree
−1. We then have that SO(2)Q = Exp•(g). Finally, for a Lie coalgebra c we denote the Chevalley-Eilenberg
complex (a dg commutative algebra) by

C(c) = (S (c[−1]),D).
Next we compute

Map(BSO(2)Q, B(GRT1 × SO(2)Q)) = MapsSet(MC•(g),MC•(grt1 ⊕ g)) = MapsSet(MC•(g),G(C(grtc1 ⊕ g
∗)))

= Mapdgca(C(grtc1 ⊕ g
∗),Ω(MC•(g)))

by adjunction. Now we can apply [4, Corollary 1.3] to see that the Chevalley complex of g is a Sullivan model for
BSO(2)Q = MC•(g), that is,

Ω(MC•(g)) ≃ C(gc).
This means that

Map(BSO(2)Q, B(GRT1×SO(2)Q)) ≃ Mapdgca(C(grtc1⊕g
∗),C(g∗)) = MC•((grt1⊕g)⊗̂C(g∗)) = MC•((grt1⊕g)⊗̂Q[u]),

where u is a variable of degree +2 that is dual to the generator e of g. We are interested in the connected component
corresponding to the MC element α = u ⊗ x, corresponding to the map

BSO(2)Q → BGRT1 × BSO(2)Q

x 7→ ∗ × x.

We then have that

Map(BSO(2)Q, B(GRT1 × SO(2)Q))α = MC•((grt1 ⊕ g) ⊗̂ Q[u])α = MC•(trunc(((grt1 ⊕ g) ⊗̂ Q[u])α))

with trunc(−) the truncated dg Lie algebra. But α is in the center of the Lie algebra (grt1 ⊕ g) ⊗̂ Q[u] and does not
produce a differential upon twisting. The truncation is then

trunc(((grt1 ⊕ g) ⊗̂ Q[u])α) = grt1 ⊕ g.
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Hence

(10) Map(BSO(2)Q, B(GRT1 ⋉ SO(2)Q))α = B(GRT1 × SO(2)Q).

Next consider the fiber sequence of simplicial groups

GRT1 × SO(2)Q → GRT ⋉ SO(2)Q → Q×,

and an associated fiber sequence

Map(BSO(2)Q, B(GRT1 × SO(2)Q))→ Map(BSO(2)Q, B(GRT ⋉ SO(2)Q))→ Map(BSO(2)Q, BQ×).

The base is equal to Q× by (9). Restricting to connected components over 1 ∈ Q× we hence have

Map(BSO(2)Q, B(GRT ⋉ SO(2)Q))[1] ≃ Map(BSO(2)Q, B(GRT1 × SO(2)Q)).

We take the connected component corresponding to the inclusion of SO(2)Q, corresponding to the MC element α
above. Using (10) this yields

Map(BSO(2)Q, B(GRT ⋉ SO(2)Q))α ≃ B(GRT1 × SO(2)Q).

Finally we use Theorem 1.1 for the case P = DQ
2 and G = SO(2)Q and Theorem 1.3 to obtain from the previous

equation that
AuthSO(2)QOp(DQ

2 ) � GRT1 ⋉ SO(2)Q.

Furthermore, the homotopy fiber sequence of Theorem 1.1 then reads,

(11) GRT1 ⋉ SO(2)Q → Auth
Op(fDQ

2 )→ Q×.

The action of GRT ⋉ SO(2)Q on DQ
2 extends to an action on fDQ

2 . (This action can be explicitly constructed
using ribbon braids as in [6] or can be deduced from the Lie algebra action on graphical models of fDQ

2 as in [7].)
Hence the final arrow in (11) induces a surjective map on π0(−) and from the long exact sequence of homotopy
groups we readily conclude that

Auth
Op(fDQ

2 ) ≃ GRT ⋉ SO(2)Q.

□

4.4. Proof of Theorem 1.6. We generically denote by X 7→ X̂ the profinite completion functor in the category of
groups, groupoids and simplicial sets and by X 7→ |X| the right adjoint to this functor.

Let G 7→ BG be the functor that sends a group to the corresponding groupoid with one object. We let PaB
and PaRB denote the parenthesized braid operad and parenthesized ribbon braid operad respectively. There is an
isomorphism

PaRB � PaB ⋊ BZ.

(observe that for any abelian group A, then BA is canonically an abelian group object in groupoids).
We let P̂aB and P̂aRB denote their profinie completion. These are operads in profinite groupoids (i.e. pro-

objects in the category of groupoids with finitely many morphisms). The functor | − | preserves products and it
follows that |PaB| and |PaRB| are operads in groupoids. Moreover, we observe that there is an isomorphism of
operads in groupoids

|P̂aRB| � |P̂aB| ⋊ B|Ẑ|

Proposition 4.1. There is a weak equivalence of simplicial monoids

Auth
Op(Gpd)(|P̂aRB|) ≃ ĜT ⋉ B|Ẑ|

Proof. First of all, since |P̂aRB| is an operad in groupoids, we have a weak equivalence

Auth
Op(Gpd)(|P̂aRB|) ≃ Auth

Op(N|P̂aRB|)

Since the nerve functor preserves product, there is a weak equivalence

N |P̂aRB| ≃ N |P̂aB| ⋊ B|Ẑ|

so we can use our main theorem and we get a fiber sequence

Auth
|BẐ|Op

(N |P̂aB|)→ Auth
Op(N|P̂aRB|)→ Auth

Mon(B|Ẑ|)

The group Auth
Mon(B|Ẑ|) can be computed as in the previous paragraph and we find

Auth
Mon(B|Ẑ|) ≃ Ẑ×
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On the other hand, the group Auth
Op(N |P̂aB|) has been computed in [15] and shown to be equivalent to the semi-

direct product ĜT ⋉ B|Ẑ|. It follows from the second part of our main theorem that

Auth
|BẐ|Op

(N |P̂aB|) ≃
(
Map(B2|Ẑ|, B(ĜT ⋉ B|Ẑ|)

)
B f

We can compute this space using the fiber sequence

BĜT1 × B2|Ẑ| → B(ĜT ⋉ B|Ẑ|)→ BẐ×

where ĜT1 denotes the kernel of the cylcotomic character

χ : ĜT→ Ẑ×.

We thus obtain a fiber sequence

Map(B2|Ẑ|, BĜT1 × B2|Ẑ|)→ Map(B2|Ẑ|, B(ĜT ⋉ B|Ẑ|))→ Map(B2|Ẑ|, BẐ×)

The third space in this fiber sequence is identified with the discrete space Ẑ× while the first space is the product

Map(B2|Ẑ|, BĜT1) ×Map(B2|Ẑ|, B2|Ẑ|) ≃ BĜT1 ×Map(B2|Ẑ|, B2|Ẑ|)

Since the base in this fiber sequence is discrete, it follows that(
Map(B2|Ẑ|, B(ĜT ⋉ B|Ẑ|)

)
B f
≃ BĜT1 ×

(
Map(B2|Ẑ|, B2|Ẑ|)

)
B2 id
≃ BĜT1 × B2|Ẑ|

where the last equivalence follows from a computation similar to the one in the previous subsection. Putting
everything together, we get a fiber sequence

BĜT1 × B2|Ẑ| → BAuth
Op(N |P̂aRB|)→ B(|Ẑ|×)

which is what we wanted modulo solving the extension problem. The extension problem is solved by noting that
the action of ĜT on N|P̂aRB| extends to an action of ĜT⋉ B|Ẑ|. (Generally, if a group G acts on an operad P such
that P(1) = H is a group, then the action extends to a G ⋉ H-action on P .) □

Let f̂D2 denote the profinite completion of the framed little disks operad. This can be viewed as a weak operad
(i.e. a functor from the algebraic theory of operads to profinite spaces preserving products up to homotopy) as in
[15] or as a Segal dendroidal object in profinite spaces as in [6]. In either case, we can compute the homotopy
automorphisms in the relevant category and we have the following theorem.

Theorem 4.2. We have
Auth(f̂D2) ≃ ĜT ⋉ BẐ

Proof. We use the language of weak operads as in [15]. We can argue exactly as in [15, Corollary 8.12] that there
is a weak equivalence

Auth(f̂D2) ≃ Auth(|Rf̂D2|)

where R denotes a fibrant replacement in the model structure of weak operads in profinite spaces. Now, we claim
that N |P̂aRB| is weakly equivalent to |Rf̂D2| in the model structure of weak operads in profinite spaces. This will
conclude the proof thanks to the previous proposition. In order to prove the claim, it suffices to observe that there
is a weak equivalence of weak operads in profinite spaces

NP̂aRB ≃ f̂D2

which is proved in [6, Lemma 8.3] and that NP̂aRB is fibrant as a weak operad in profinite spaces. This comes
from the fact that the functor N is a right Quillen functor and that the profinite groupoids P̂aRB(n) are fibrant by
[15, Proposition 4.40]. □

4.5. A remark about the non-unital case. Our theorems above are for the unital (framed) little disks operad, i.e.
we have D2(0) ≃ ∗. But we also immediately derive an analogous result for the non-unital little disks operad Dnu

2
defined by

(12) Dnu
2 (n) =

{
∅ if n = 0
D2(n) if n ≥ 1

with the obvious operad structure ; and also the non-unital framed little disks operad fDnu
2 defined similarly. In

that case we have the following theorems.
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Theorem 4.3. There are weak equivalences of simplicial monoids

AuthSO(2)Op(Dnu
2 ) ≃ SO(2)

Auth
Op(fDnu

2 ) ≃ O(2)

Proof. By [16, Theorem 2.7], the map

Auth
Op(D2)→ Auth

Op(Dnu
2 )

is a weak equivalence of simplicial monoids. It follows from Theorem 1.1 that

AuthSO(2)Op(D2)→ AuthSO(2)Op(Dnu
2 )

is a weak equivalence as well. We therefore obtain the first claim by Theorem 1.4. The second claim is proved
exactly as in Theorem 1.4 using the observation that fDnu

2 = Dnu
2 ⋊ SO(2). □

We also have an analogue of Theorem 1.6.

Theorem 4.4. There is a weak equivalence of simplicial monoids

Auth(f̂Dnu
2 ) ≃ ĜT ⋉ BẐ

Proof. By the Quillen adjunction between profinite spaces and spaces, we have identifications

Auth(f̂Dnu
2 ) ≃ Map

′h(fDnu
2 , |Rf̂Dnu

2 |), Auth(f̂D2) ≃ Map
′h(fD2, |Rf̂D2|)

where R is a fibrant replacement in the category of weak operads in profinite spaces. By [16, Theorem 2.7], we
have a weak equivalence

Maph(fD2, |Rf̂D2|) ≃ Maph(fDnu
2 , |Rf̂Dnu

2 |)

Putting everything together, we find that the map

Auth(f̂D2)→ Auth(f̂Dnu
2 )

is a weak equivalence. □

Remark 4.5. We believe that Theorem 1.5 also holds for the non-unital framed little disks operad, however, this
does not follow immediately from [16, Theorem 2.3] since rationalization is not a localization.

5. Homotopy automorphisms of the Batalin-Vilkovisky cooperad

It has been shown by B. Fresse [11] that the classical Quillen adjunction (8) of rational homotopy theory can
be extended to a Quillen adjunction

Ω♯ : Op∗ ⇄ (ΛHOpc)op : G

between the category of simplicial (Λ) operads with the Reedy model structure and the category of dg Λ Hopf co-
operadsΛHOpc, that is,Λ cooperads in the category of dg commutative algebras. In this setting, the rationalization
of a cofibrant operad P ∈ Op∗ is defined as

PQ := G(Ω̂♯ P),

where Ω̂♯ P is a fibrant replacement of Ω♯ P in ΛHOpc.
By formality of the framed little disks operad [14, 20], we know that Ω♯(fD2) ≃ H•(fD2; Q) := BVc, with BVc

the Batalin-Vilkovisky cooperad. By adjunction we have that

AuthΛHOpc (BVc) � Map
′h
Op∗ (fD2, fD

Q
2 ) ≃ Map

′h
Op(fD2, fD

Q
2 ).

This is a priori different from the simplicial monoid computed in Theorem 1.5. (The underlying problem is that
fD2 is not known to be Q-good.) However, we may compute Auth

ΛHOpc (BVc) along the same lines as above to yield
the following result.

Theorem 5.1. We have a weak equivalence of simplicial monoids

AuthΛHOpc (BVc) ≃ Auth
Op(fDQ

2 ) ≃ GRT ⋉ SO(2)Q.
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Proof sketch. We may adapt the proof of Theorem 1.1 above for the case of Λ Hopf cooperads instead of topolog-
ical operads. One has a homotopy fiber sequence

Auth(ΛHOpc)/A (BVc)→ AuthΛHOpc (BVc)→ Autdgca(A)

with A := BVc(1) = H•(S 1). We furthermore have, by the Hopf cooperad analog of the adjunction of Lemma 2.2,

Auth(ΛHOpc)/A (BVc) ≃ Map
′h
SO(2)QΛHOpc (BVc, ec

2)

with ec
2 = H•(D2) the Gerstenhaber cooperad. Lemma 3.2 and Corollary 2.5 also have Hopf cooperad analogs that

together yield
Map

′h
SO(2)QΛHOpc (BVc, ec

2) ≃ AuthSO(2)QΛHOpc (ec
2),

so that the inclusion
AuthSO(2)QΛHOpc (ec

2)→ Auth(ΛHOpc)/A (BVc)

is a weak equivalence of simplicial monoids. By the computations of [10, 13] we have that

AuthΛHOpc (ec
2) � GRT ⋉ SO(2)Q.

Then Proposition 3.4 tells us that

BAuthSO(2)QΛHOpc (ec
2) ≃ Map(BSO(2)Q, BAuthΛHOpc (ec

2)).

From this point on the computations are the same as in the proof of Theorem 1.5 above, and yield the stated
result. □

Finally, there is also a non-Λ (i.e., non-unital) version of the above result.

Corollary 5.2. There is a weak equivalence of simplicial monoids

AuthHOpc (BVc) ≃ AuthΛHOpc (BVc) ≃ GRT ⋉ SO(2)Q.

Proof. We have the chain of weak equivalences

Maph
ΛHOpc (BVc,BVc) ≃ Maph

Op∗ (fD2, fD
Q
2 )

(∗)
≃ Maph

Op(fD2, fD
Q
2 )

(∗∗)
≃ Maph

Op(fDnu
2 , (fD

nu
2 )Q)

≃ Maph
HOpc (BVc,BVc),

where for the weak equivalence (*) we use again the main result of [12], and for (**) we use again [16, Theorem
2.7]. Restricting to the components corresponding to weak equivalences on the left- or equivalently the right.hand
side of the chain above yields the result. □
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